

OSUN STATE UNIVERSITY, OSOGBO

ASSIGNMENT: Number Systems and Codes

IFT 211/CSC211

Instructions to Students

- Answer **ALL questions**.
- Show **clear steps** for every conversion/arithmetic question.
- Where applicable, give final answers in **both** the requested base and **decimal** for verification.

SECTION A: Concepts and Definitions (Short Answers)

1. Define a **number system** and explain what **radix/base** means.
2. State the place values (weights) for the first **8 positions** in:
 - binary
 - octal
 - hexadecimal
3. Differentiate between:
 - **positional** and **non-positional** number systems
4. Define **bit**, **nibble**, **byte**, **word** (give typical sizes).
5. List **three practical uses** of hexadecimal in digital systems.
6. Explain why **octal** and **hexadecimal** are convenient for representing binary numbers.
7. Define **BCD**, **Excess-3**, **ASCII**, and **Gray code** (one sentence each).
8. State two advantages of **Gray code** in digital systems.

SECTION B: Base Conversions (Show Steps)

Convert the following:

(i) Binary \leftrightarrow Decimal

1. $(101101)_2$ to decimal
2. $(1100111)_2$ to decimal
3. $(10010.101)_2$ to decimal

(ii) Decimal → Binary

4. $(45)_{10}$ to binary
5. $(156)_{10}$ to binary
6. $(23.625)_{10}$ to binary

(iii) Binary ↔ Octal

7. $(110101011)_2$ to octal
8. $(725)_8$ to binary
9. $(563.4)_8$ to binary

(iv) Binary ↔ Hexadecimal

10. $(111011001101)_2$ to hexadecimal
11. $(3AF)_{16}$ to binary
12. $(B9.6)_{16}$ to binary

(v) Decimal ↔ Hexadecimal

13. $(255)_{10}$ to hexadecimal
14. $(1024)_{10}$ to hexadecimal
15. $(7D)_{16}$ to decimal

SECTION C: Binary Arithmetic (Show Work)

Perform the following operations:

1. $(101101)_2 + (11011)_2$
2. $(1110101)_2 + (1010110)_2$
3. $(100000)_2 - (1101)_2$
4. $(1010001)_2 - (111011)_2$
5. $(1101)_2 \times (101)_2$
6. $(11100)_2 \div (100)_2$ (give quotient and remainder)

SECTION D: Signed Binary Numbers

1. Represent **+25** and **-25** in:
 - o sign-magnitude (8-bit)
 - o 1's complement (8-bit)
 - o 2's complement (8-bit)
2. Find the 2's complement of each (8-bit):
 - o 00110110

- 10000000
- 01111111

3. Perform using 2's complement arithmetic (8-bit):

- $25 + (-13)$
- $(-18) + (-7)$
- $14 - 27$

4. State whether **overflow occurs** in each operation and why.

SECTION E: BCD and Excess-3 Codes

(i) BCD

1. Encode these decimal numbers in **8421 BCD**:

- 59
- 307
- 948

2. Decode these BCD numbers into decimal:

- 0101 1001
- 0011 0001 0110

3. Perform **BCD addition** and show correction where necessary:

- $39 + 27$
- $58 + 76$

(ii) Excess-3

4. Convert these decimal digits to Excess-3:

- 0, 4, 7, 9

5. Convert these Excess-3 codes to decimal:

- 0100
- 1001
- 1100

6. Perform XS-3 addition (show correction):

- $25 + 18$

- 46 + 39

SECTION F: ASCII and Character Codes

1. Write the **7-bit ASCII** for:
 - A, Z, a, z, 0, 9
2. Convert the following ASCII codes to characters:
 - 1000001
 - 0110001
 - 0100000
3. A system stores the word “**CAT**” in ASCII. Write the binary for each letter and the full stream.

SECTION G: Gray Code

1. Convert the following binary numbers to Gray code:
 - 0000
 - 0101
 - 1001
 - 1110
2. Convert the following Gray codes to binary:
 - 0110
 - 1101
 - 1011
3. Explain (briefly) why Gray code reduces errors in mechanical/rotary encoders.

SECTION H: Mixed Test-Style Challenge (Very Similar to CBT)

1. Convert $(11011101)_2$ to hexadecimal and decimal.
2. Convert $(3B7)_{16}$ to binary and octal.
3. Add in binary: $(10101111)_2 + (01110101)_2$. State if overflow occurs (8-bit signed).
4. Represent -45 in 8-bit 2's complement.

5. Convert decimal 92 to BCD and Excess-3.

6. Convert binary 101011 to Gray code.