
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-1: Classes and Objects

reading: 8.1-8.3

self-checks: Ch. 8 #1-9

exercises: Ch. 8 #1-4

Copyright 2008 by Pearson Education
2

Problem
 Declaring same group of related variables several times in

a program

int x1 = 3;

int y1 = 5;

int x2 = 12;

int y2 = 4;

 Annoying and redundant

 Unclear and hard to keep track of variables

Copyright 2008 by Pearson Education
3

Solution: Objects
 Group together related variables into an object

 Like creating your own data structure out of Java building
blocks

public class <object name> {

 <field(s)>;

}

 Syntax to use this data structure:

 <object> <variable> = new <object>();

Copyright 2008 by Pearson Education
4

Solution: Objects
 Group together related variables into an object

 Like creating your own data structure out of Java building
blocks

public class Point {

 int x;

 int y;

}

 Syntax to use this data structure:

 Point p1 = new Point();

Copyright 2008 by Pearson Education
5

Two Uses for Java Classes

class: A program entity that represents
either:

 1. A program / module, or

 2. A template for a new type of objects.

 The DrawingPanel class is a template for
creating DrawingPanel objects.

object: An entity that combines state and
behavior

Copyright 2008 by Pearson Education
6

Java class: Program
 An executable program with a main method

 Can be run; statements execute procedurally

 What we’ve been writing all quarter

public class BMI2 {

 public static void main(String[] args) {

 giveIntro();

 Scanner console = new Scanner(System.in);

 double bmi1 = getBMI(console);

 double bmi2 = getBMI(console);

 reportResults(bmi1, bmi2);

 }

 ...

}

Copyright 2008 by Pearson Education
7

Java class: Object Definition
 A blueprint for a new data type

 Not executable, not a complete program

 Created objects are an instance of the class

 Blueprint:
public class Point {

 int x;

 int y;

}

 Instance:

 Point p1 = new Point();

Copyright 2008 by Pearson Education
8

Blueprint analogy
◼iPod blueprint

state:
 current song
 volume
 battery life

behavior:
 power on/off
 change station/song
 change volume
 choose random song

◼iPod #1

◼state:
 song = “Octopus’s Garden"
 volume = 17
 battery life = 2.5 hrs

◼behavior:
 power on/off
 change station/song
 change volume
 choose random song

◼iPod #2

◼state:
 song = “Lovely Rita"
 volume = 9
 battery life = 3.41 hrs

◼behavior:
 power on/off
 change station/song
 change volume
 choose random song

◼iPod #3

◼state:
 song = “For No One"
 volume = 24
 battery life = 1.8 hrs

◼behavior:
 power on/off
 change station/song
 change volume
 choose random song

◼create
s

Copyright 2008 by Pearson Education
9

Abstraction

 abstraction: A distancing between ideas and details.

 We can use objects without knowing how they work.

 abstraction in an iPod:

 You understand its external behavior (buttons, screen).

 You don't understand its inner details, and you don't need to.

Copyright 2008 by Pearson Education
10

Client and Object Classes
 client program: A program that uses objects.

 Example: HW6 Names is a client of DrawingPanel and
Graphics.

 object: An entity that combines state and behavior

 state: data fields

 behavior: methods

Copyright 2008 by Pearson Education
11

The Object Concept
 procedural programming: Programs that perform their

behavior as a series of steps to be carried out

 object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects

 Takes practice to understand the object concept

Copyright 2008 by Pearson Education
12

Fields

 field: A variable inside an object that is part of its
state.

 Each object has its own copy of each field.

 Clients can access/modify an object's fields

 access: <variable>.<field>

 modify: <variable>.<field> = <value>;

 Example:
Point p1 = new Point();

Point p2 = new Point();

System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

Copyright 2008 by Pearson Education
13

Behavior
 Objects can tie related data and behavior together

 instance method: A method inside an object that
operates on that object

 public <type> <name> (<parameter(s)>) {
 <statement(s)>;
 }

 Syntax to use method:

 <variable>.<method>(<parameter(s)>);

 Example:

p1.translate(11, 6);

Copyright 2008 by Pearson Education
14

Implicit Parameter

 Each instance method call happens on a
particular object.
 Example: p1.translate(11, 6);

 The code for an instance method has an
implied knowledge of what object it is
operating on.

 implicit parameter: The object on which an
instance method is called.
 Can be referred to inside the object using this

keyword

Copyright 2008 by Pearson Education
15

Accessors

 accessor: An instance method that provides
information about the state of an object.

 Example:
 public double distanceFromOrigin() {

 return Math.sqrt(x * x + y * y);

 }

 This gives clients "read-only" access to the
object's fields.

Copyright 2008 by Pearson Education
16

Mutators

 mutator: An instance method that modifies
the object’s internal state.

 Example:
 public void translate(int dx, int dy) {

 x += dx;
 y += dy;

 }

 This gives clients both read and write access
to code.

	Slide 1: Building Java Programs
	Slide 2: Problem
	Slide 3: Solution: Objects
	Slide 4: Solution: Objects
	Slide 5: Two Uses for Java Classes
	Slide 6: Java class: Program
	Slide 7: Java class: Object Definition
	Slide 8: Blueprint analogy
	Slide 9: Abstraction
	Slide 10: Client and Object Classes
	Slide 11: The Object Concept
	Slide 12: Fields
	Slide 13: Behavior
	Slide 14: Implicit Parameter
	Slide 15: Accessors
	Slide 16: Mutators

