

Counters and Registers

1. Concept of Registers

A

is a small, fast storage unit in a digital system made up of a group of connected together. It is used to store multiple bits of binary data temporarily during processing operations.

Since each flip-flop can store :

- A contains

and can store 4 bits of data

- An contains and can store 8 bits of data

Registers are very important because they provide quick access to data during system operations.

**Main Functions
of Registers**

✓

Registers hold data while it is being processed by the CPU.

✓

They move data between different parts of a digital system.

✓

Some registers support shifting and arithmetic operations.

Areas Where Registers Are Used

- In the , such as the accumulator, instruction register, and data register
- In for buffering data
- In to handle serial and parallel data

2. Types of Registers

Registers are classified based on how data enters and leaves them.

(a) SISO – Serial In Serial Out

In a , data enters and also leaves in the same sequence.

✓ Input is serial

✓

Output is serial

This type of register is mainly used in:

- Data transmission systems

- Delay circuits

(b) SIPO –
Serial In Parallel Out

In a , data enters serially but is available at the output in .

✓ **Input: one bit at a time**

✓

Output: all bits at once

This is useful when:

- **Converting serial data to parallel data**
- **Receiving data from communication channels**

**(c) PISO –
Parallel In Serial Out**

In a , multiple bits are loaded at the same time (parallel) and then shifted out one by one (serially).

✓ Input: parallel

✓

Output: serial

Used in:

- Data transmission
- Reducing number of wires required

**(d) PIPO –
Parallel In Parallel Out**

In a , data is loaded and taken out simultaneously in parallel form.

✓ Input: parallel

✓

Output: parallel

This type is best for:

- High-speed data storage
- Temporary data holding inside processors

3. Shift Registers

A is a register that shifts its stored data either when a clock pulse is applied.

Each clock pulse moves the data by one position.

Types of Shift Registers

- – shifts data towards left

- – shifts data towards right

- – can shift in both directions

Applications of Shift Registers

- ✓ Moving data between registers

- ✓ Performing arithmetic shifts (multiplication/division by 2)

- ✓ Temporary data storage

- ✓ Used in communication systems such as serial data transmission

4.

Applications of Registers

Registers play many roles in digital systems:

- **Storing instructions in the CPU**
- **Holding data for processing**
- **Acting as buffers between system units**
- **Converting data between serial and parallel formats**
- **Speeding up computer operations**

5. Counter

Basics

A

is a type of sequential circuit designed to applied to it.
With every clock pulse, the counter changes
its state in a predefined binary sequence.

**Example: 3-bit
Binary Counter**

$000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$
After reaching 111, it resets to 000.

**Common Uses of
Counters**

✓ Digital clocks

✓
Timers

✓
Event counting systems

Frequency measurement devices

6. Ripple vs Synchronous Counters

Counters can be classified based on how clock pulses are applied.

Ripple (Asynchronous) Counter

- Clock pulse is applied only to the first flip-flop
- The output of one flip-flop triggers the next
- Each flip-flop changes state after the previous one

⚠ This causes delay known as

✓ Simple design

✗ Slower operation

Synchronous Counter

- All flip-flops receive the clock signal at the same time
- All states change simultaneously

✓ Fast

✓

Accurate

✗ More complex circuit design

Comparison Table

Feature

**Ripple
Counter**

**Synchronous
Counter**

Speed

Slow

Fast

Delay

High

Very
low

Design

Simple

Complex

Usage

**Small
systems**

**Modern
systems**

**7. Up/Down
Counters**

Up Counter

Counts forward in increasing order:

$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \dots$

Down Counter

Counts backward:

$4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0 \dots$

Up/Down Counter

Has a control input that determines counting direction.

✓ If control = 1 \rightarrow counts up

✓

If control = 0 \rightarrow counts down

Applications

- Elevator control systems
- Digital scoreboards
- Timers and clocks

8. Mod-N

Counters

A is a counter that counts from and then resets back to zero.

Example:

Mod-10 Counter

Counts:

0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → reset

Where Mod-N Counters Are Used

✓ Digital clocks (seconds, minutes)

✓
Calculators

✓
Frequency dividers

✓
Electronic displays

9. Mod-10 Counter Design (Simple Explanation)

To design a :

Step 1:
Determine number of flip-flops

Since:

$2^3 = 8$ (not enough)

$2^4 = 16$ (sufficient)

👉 Use

Step 2: Normal
Counting

The counter counts naturally:

0000 (0) \rightarrow 0001 (1) \rightarrow ... \rightarrow 1001 (9)

Step 3: Reset
Condition

When the counter reaches:

1010 (10)

A logic gate detects this and sends a to bring it back to:

0000 (0)

This ensures the counter only counts from 0 to

9.

CONCLUSION

**Registers and counters are fundamental
building blocks of digital systems.**

- Registers store and transfer binary data**
- Shift registers move data efficiently**

- Counters track events and time
- Mod-N counters control counting limits

Together, they form the backbone of computers, digital clocks, and control systems.