Importance of Modeling

Object-Oriented Analysis and
Design

Introduction to Modeling

* Modeling is a fundamental engineering
practice used to understand, design, and
communicate complex systems before
building them in reality.

Dog House Example

* A simple dog house can be built with
minimal planning.

* * Few requirements

* « Low risk of failure

* + Easy to rebuild if mistakes occur

Family House Example

* Building a family house requires planning
and blueprints.

* » More users and requirements
* » Compliance with standards
* » Managing cost and changes

High-Rise Building Example

* Complex projects need extensive
modeling.

* +» Multiple stakeholders
* +» High cost of failure
* + Detailed architectural models required

Software Development Analogy

* Many software projects are complex like
high-rise buildings,

* yet are sometimes approached like simple
dog houses.

* This often leads to failure.

Why Software Projects Fail

* + Lack of planning and modeling
* +» Over-reliance on coding alone
* » Unmanaged complexity and change

What Is a Model?

* A model is a simplification of reality.
* + Provides blueprints
* * Focuses on important aspects

* « Can be structural or behavioral

Uses of Modeling in Other Fields

* + Architecture and construction
* + Aircraft and automobile design
* + Electronics and communication systems

* « Movies, business, economics, and
sociology

Why Do We Model?

* Modeling helps us to:
* 1. Visualize systems
* 2. Specify structure and behavior

* 3. Guide construction
* 4. Document decisions

Modeling and Complexity

* We model complex systems because we
cannot understand them fully at once.

* Modeling supports divide-and-conquer
and higher abstraction.

Benefits of Modeling in Software

* +» Helps build the right system

* « Reduces risk and rework

* *« Improves communication

* + Essential as systems grow more
complex

Principles of Modeling

Object-Oriented Analysis and
Design (OOAD)

Introduction to Modeling Principles

* Modeling has a long history in engineering
disciplines.

* It helps in understanding, designing, and
managing complex systems.

Principle 1: Choice of Models
Matters

* The models we choose strongly influence
how a problem is understood and solved.

* +» Right models reveal key insights

* » Wrong models mislead and focus on
irrelevant issues

Example from Science &
Engineering
* » Quantum physics problems become
easier with the right mathematical model

* » Wind tunnel models help predict building
behavior

* » Mathematical simulations allow testing
more scenarios

Impact on Software Development

Different viewpoints create different
systems:

 Database view - Entity-Relationship
models

» Structured analysis — Algorithm-centric
models

* Object-Oriented view - Classes and
iInteractions

Principle 2: Levels of Precision

* Every model can be expressed at different
levels of detail.

* + High-level view (30,000-foot view)

* « Low-level detailed view (implementation
details)

| evels of Precision in Software

* +» Simple Ul prototypes for users

» « Detailed models for interfaces and
performance issues

* + Analysts focus on ‘'what
* +» Developers focus on 'how'

Principle 3: Models Must Reflect
Reality

* Models must have a clear connection to

the real world.

+ Simplifications should not hide critical
details.

Reality and Software Models

* » Poor connection causes divergence
between design and implementation

* + Object-oriented modeling helps unify
system views

* » Reduces gap between analysis and
design

Principle 4: No Single Model Is
Enough

* Complex systems require multiple models.

* Each model captures a different aspect of
the system.

Building Analogy

* Buildings require multiple plans:
* Floor plans
» Electrical plans
* Plumbing plans
 Heating and structural plans

Nearly Independent Models

* Models can be studied separately but are
interrelated.

* Together, they provide a complete
understanding of the system.

Object-Oriented Modeling &
UML

OOAD - Section 1.3 and
Conceptual Model of UML

Object-Oriented Modeling

* Engineers use different models (structural
and dynamic) depending on concerns.

* In software, modeling can be algorithmic
or object-oriented.

Algorithmic vs Object-Oriented View

* Algorithmic perspective:
* +» Focus on procedures and control flow
* » Hard to maintain as systems grow

* Object-Oriented perspective:
* » Focus on objects and classes
* + Better for change and complexity

Objects and Classes

* Object:
* + |dentity

* « State
* « Behavior

* Class:

* + Blueprint describing common objects

Why Object-Oriented Modeling?

* » Works for systems of all sizes

* +» Supported by modern languages and
tools

* » Enables component-based development
* +» Foundation of UML

Introduction to UML

* Unified Modeling Language (UML)

* + Created by Booch, Rumbaugh, and
Jacobson

* + Became a de facto modeling standard
* +» Used to design systems and programs

What is UML?

* + A modeling language, not just diagrams
* + Captures syntax and semantics

» « Used for software and database

modeling

Overview of UML

* UML is used for:
* + Visualizing
» Specifying
» Constructing
* Documenting systems

Visualizing

* +» Uses standard graphical notation
* + Semi-formal language

* +» Helps understand complex systems
visually

Specifying

* » Models are precise and unambiguous
* + UML defines syntax and semantics

* + Captures analysis, design, and
implementation decisions

Constructing

* + UML models map to OO languages
* » Forward engineering: Model - Code
* » Reverse engineering: Code - Model

Conceptual Model of UML

* Three major elements:
* 1. Basic Building Blocks

* 2. Rules
* 3. Common Mechanisms

1.Basic Building Blocks

* UML vocabulary includes:
* * Things

* + Relationships

* » Diagrams

Things in UML

* Four kinds:

» Structural
 Behavioral

» Grouping

« Annotational

Structural Things mow
* Static parts of a model:

» Class -

* + Interface X

* « Collaboration {Cv?}
- Use Case -

* « Active Class
» Component

* « Node

Behavioral Things gen)

* Dynamic behavior:

* « Interaction (message exchange)
- « State Machine (states and transitions)

Grouping Things

* +» Package

Organizes model elements
Exists only at development time

An nOtatl Oond I Th | N g S (explanatory part)

* * Notes
Used for comments and constraints

Relationships in UML

* Four types:

* Dependency - - - - - >
» Association (Aggregation)
* Generalization >

* Realization - >

UML Diagrams

* UML includes 9 diagrams:
* Class, (S)

* Object, (S)

* Use Case, (D)

» Sequence, (D &1)

* Collaboration, (D &)

- Statechart, (D)

- Activity, (D)

* Component, (S)

* Deployment (S)

Static vs Dynamic Modeling

» Static:

* *Class

* + Object

* » Component
* » Deployment

* Dynamic:

* « Use Case

» Segquence

* Collaboration
* « Statechart

* Activity

Library System Case Study

OBJECTIVE:

To draw the UML diagrams for library in which students
takes and returns books.

* DESCRIPTION:

Generally a college library consists of books and staff.
Students and faculty members utilizes the library books. So,
they are first made as members and are given passbooks

and tickets for taking issues. Library maintains an ID for each
library member. Members are allowed to take issues using
their respective ID’s and return those books after prescribec
time. If some books are issued or returned the library
database should be updated accordingly.

USECASE DIAGRAM

kray management £ysten

borrow books }------= valid user
<<|ncliide= -

e A
—— a ‘-_\-N‘.‘-\
o check library
retirf books card
<<lnclute==
studert ———

staft

CLASS DIAGRAM

staff
book -name : char
Fhame . char designation : char
-author : char +ehecklibeard() - boolean
wgetigsuel) | char
+aetreturni) - char

’ 4<l SEs>
|

|

studenit V
Lnaime : char lbcard
tbranch . char Lcardno ; int
ibcardne ; int Lhranch @ char
lkborrowinal) void +checklibcard() © boolean
+returning() © void

CONTINUATION

CLASS NAME ATTRIBUTES OPERATION
Books name, author get 1ssue(), get return()
Student Name,branch,libcardno Borrowing(),returning()
Libcard Cardno,branch Checklibcard()
Staff Name,designation Checklibcard()

SEQUENCE DIAGRAM

libcard

% library book staff
Etu:ien‘t : : :
erters the ibrary
i I |
log in to the regist;l".L I l
I |
I |
searches books |
s lbmit the hnnkij |
] 1 =
| I
| I T check libcard
| |
| | —
issLes hang [borrowing rl*.age] 1
{ | |
gives calds bacH to the users [reiurning case] —
- L 1
g, T

|
leaves the likbiany I
|

v

1

COLLABORATION DIAGRAM

2. log in to the register library

__':;. o. leaves the ibrary
1: enters the libbrary

3. =earches books

._:__,. book

4: =ubmit the books
=
5. issues books [bormowing case]
-

7. gives cards back to the users [retuming case]

-

=tudeint

staff

\]/S: check libcard

libcard

OlAlIE DIAGRAMV

4 library

ertry / studert note< the ertering tine
extt / student notes the leaving time

ielle > _\‘

-~
selects the E!II"IJ'IE-‘-I‘;{, o

M
[return) jrefer]
N4 fering book
I"' IssLing hnnka"] [Faturnln hunk§‘| [TE STE e ;-}
—)
leavds the library
[cartinue]

processing

Activity Diagram

LIS e atim bBank

inserts the ::ar-D /—j-f checks the validiy)

@"Ec’rsthe ﬂ:er-ic;,l
balange checking] |E i :]
lance enguiry

| =

. IELUEs the halance detlals
[warithuclr] i :: — >
wwithiedr s sl
[wwithecir anwr]
(recenes aimournt)*ﬂ:__

S e [ratance]
collects the receipjt)\

leaves the machine
<)“':: { receives the card >

[lbrgry il

Component Diagram

hook db \
%
%
issue db \

l
staff.db \

library htmi
login java
INenu java

A

USET e

Deployment Diagram

<enetworkss

l0g.db
books db
staff.db
issue b
return.db

brary seruerﬁ

States invol

ATM

ved:

user, idle, active, selecting services, processing. Selecting

service
as substate

Description

s-withdrawl| balance enquiry

Initially, user is in idle state, and then he will insert the card
and becomes active. He enters the pin number and selects

the service

he needs to take. If he need to withdrawl, he

enters the amount to be debited and he receives the
amount and then he receives the card and quits from ATM.

If he need the balance enquires, ATM process and gives

the receipt

naving information regarding balance.

ATM MACHINE

ATE Machine

thdrawals
|
|
|
|

halance enguiry

customer
=< |nclude=>

wser valicdation

CLASS DIAGRAM

Bank

Lnaime - char
Lhranch - char
Latim id : ind

Hacc details() - it

ATM class customer account
branch : char -naime - char
=i - int _________%:}-at:::nn:irt

+acc details() ; void Lhalance : float

sl ises=>

ywrithidraw () - int +acc details() . void

+wvalidate wuser() : boolean

=L IEeESs=

{}----

wverfication
userid - char
-password | char
Hyalidatel) - char

CONTINUATION

Class name Attributes Operation

Bank Name, branch, atmid Acc details()

ATM class Branch, 1d Accdetauls(),withdraw(),validate
user()

Customer account Name, accno, balance Acc details()

SEQUENCE DIAGRAM

% ot

customer

insets card & enters the pin

=

validatel)

verfication

I
|
I
|
I
|

selects the required service T

}J._

enters amount [withdrawal]

L

I

I

I

I

I
acc_details()

gives amount with the receipt |

COLLABORATION DIAGRAM

1: in=erts card & aiters the pin

%

2. =elects the requilred =ervice

—=>

4. erters amount [withdr aweal)

=

ot
G gives amounit with the receipt =
customer "'r-:_
2. waldatel)
. acc_details() \L,
Bk

verfication

Ielle

exit

STATE DIAGRAM

o

i active

entry / reads the card
extt [/ ejects the card

-
user inselts the card

.ﬁGElEﬂE the seruicai

[chedking balance]

[wwithiclr ey

—

[f wﬁhdrﬂwalw f balance mqmrf\‘]

\ I)

processing TCortinge]

leaves the ibrary

ACTIVITY DIAGRAM

LIseT

atim

irserts the ::aar-D

Gelec:’rsthe Service
balange checking)

""“'r/r checks the validity)

[writhir o]

,__‘élame enquir".rJ
-

Ak

-~ WESUES the balance ﬂﬂ@
—

< receies aimourt

H wiy it r vy &l :|

[wwithecir 3]

W

p

[ratance]

I
collecis the re-::euft)\

e

@ves the mach@

s

Component Diagram

E'f \ \
halance dh
6 b withdraw db

"

k)

%
"

Deployment Diagram

withicdraw db
|Hl-n fl'ltlnl balance db
CQIn |ava customer db
menu java “enetworios atmbranche b

mtin Server
bank server

Rules of UML

* Models must be well-formed:

* Names

» Scope

» Visibility
* Integrity

» Execution

Common Mechanisms

* + Specifications

« Adornments
« Common divisions
» Extensibility mechanisms

Extensibility Mechanisms

» « Stereotypes (<< >>)
* +» Extend UML vocabulary

* +» Used for classes, components,
relationships

Key Definitions

* System: Organized subsystems for a
purpose

* Subsystem: Group of related elements
* Model: Simplified abstraction of reality
* View: Projection of a system model

