
Importance of Modeling

Object-Oriented Analysis and
Design

Introduction to Modeling

• Modeling is a fundamental engineering
practice used to understand, design, and
communicate complex systems before
building them in reality.

Dog House Example

•

•

•

•

A simple dog house can be built with
minimal planning.

• Few requirements

• Low risk of failure

• Easy to rebuild if mistakes occur

Family House Example

•

•

•

•

Building a family house requires planning
and blueprints.

• More users and requirements

• Compliance with standards

• Managing cost and changes

High-Rise Building Example

•

•

•

•

Complex projects need extensive
modeling.

• Multiple stakeholders

• High cost of failure

• Detailed architectural models required

Software Development Analogy

•

•

•

Many software projects are complex like
high-rise buildings,

yet are sometimes approached like simple
dog houses.

This often leads to failure.

Why Software Projects Fail

•

•

•

• Lack of planning and modeling

• Over-reliance on coding alone

• Unmanaged complexity and change

What Is a Model?

•

•

•

•

A model is a simplification of reality.

• Provides blueprints

• Focuses on important aspects

• Can be structural or behavioral

Uses of Modeling in Other Fields

•

•

•

•

• Architecture and construction

• Aircraft and automobile design

• Electronics and communication systems

• Movies, business, economics, and
sociology

Why Do We Model?

•

•

•

•

•

Modeling helps us to:

1. Visualize systems

2. Specify structure and behavior

3. Guide construction

4. Document decisions

Modeling and Complexity

•

•

We model complex systems because we
cannot understand them fully at once.

Modeling supports divide-and-conquer
and higher abstraction.

Benefits of Modeling in Software

•

•

•

•

• Helps build the right system

• Reduces risk and rework

• Improves communication

• Essential as systems grow more
complex

Principles of Modeling

Object-Oriented Analysis and
Design (OOAD)

Introduction to Modeling Principles

•

•

Modeling has a long history in engineering
disciplines.

It helps in understanding, designing, and
managing complex systems.

Principle 1: Choice of Models
Matters

•

•

•

The models we choose strongly influence
how a problem is understood and solved.

• Right models reveal key insights

• Wrong models mislead and focus on
irrelevant issues

Example from Science &
Engineering

•

•

•

• Quantum physics problems become
easier with the right mathematical model

• Wind tunnel models help predict building
behavior

• Mathematical simulations allow testing
more scenarios

Impact on Software Development

•

•

•

•

Different viewpoints create different
systems:

• Database view → Entity-Relationship
models

• Structured analysis → Algorithm-centric
models

• Object-Oriented view → Classes and
interactions

Principle 2: Levels of Precision

•

•

•

Every model can be expressed at different
levels of detail.

• High-level view (30,000-foot view)

• Low-level detailed view (implementation
details)

Levels of Precision in Software

•

•

•

•

• Simple UI prototypes for users

• Detailed models for interfaces and
performance issues

• Analysts focus on 'what'

• Developers focus on 'how'

Principle 3: Models Must Reflect
Reality

•

•

Models must have a clear connection to
the real world.

Simplifications should not hide critical
details.

Reality and Software Models

•

•

•

• Poor connection causes divergence
between design and implementation

• Object-oriented modeling helps unify
system views

• Reduces gap between analysis and
design

Principle 4: No Single Model Is
Enough

•

•

Complex systems require multiple models.

Each model captures a different aspect of
the system.

Building Analogy

•

•

•

•

•

Buildings require multiple plans:

• Floor plans

• Electrical plans

• Plumbing plans

• Heating and structural plans

Nearly Independent Models

•

•

Models can be studied separately but are
interrelated.

Together, they provide a complete
understanding of the system.

Object-Oriented Modeling &
UML

OOAD – Section 1.3 and
Conceptual Model of UML

Object-Oriented Modeling

•

•

Engineers use different models (structural
and dynamic) depending on concerns.

In software, modeling can be algorithmic
or object-oriented.

Algorithmic vs Object-Oriented View

•

•

•

•

•

•

Algorithmic perspective:

• Focus on procedures and control flow

• Hard to maintain as systems grow

Object-Oriented perspective:

• Focus on objects and classes

• Better for change and complexity

Objects and Classes

•

•

•

•

•

•

Object:

• Identity

• State

• Behavior

Class:

• Blueprint describing common objects

Why Object-Oriented Modeling?

•

•

•

•

• Works for systems of all sizes

• Supported by modern languages and
tools

• Enables component-based development

• Foundation of UML

Introduction to UML

•

•

•

•

Unified Modeling Language (UML)

• Created by Booch, Rumbaugh, and
Jacobson

• Became a de facto modeling standard

• Used to design systems and programs

What is UML?

•

•

•

• A modeling language, not just diagrams

• Captures syntax and semantics

• Used for software and database
modeling

Overview of UML

•

•

•

•

•

UML is used for:

• Visualizing

• Specifying

• Constructing

• Documenting systems

Visualizing

•

•

•

• Uses standard graphical notation

• Semi-formal language

• Helps understand complex systems
visually

Specifying

•

•

•

• Models are precise and unambiguous

• UML defines syntax and semantics

• Captures analysis, design, and
implementation decisions

Constructing

•

•

•

• UML models map to OO languages

• Forward engineering: Model → Code

• Reverse engineering: Code → Model

Conceptual Model of UML

•

•

•

•

Three major elements:

1. Basic Building Blocks

2. Rules

3. Common Mechanisms

1.Basic Building Blocks

•

•

•

•

UML vocabulary includes:

• Things

• Relationships

• Diagrams

Things in UML

•

•

•

•

•

Four kinds:

• Structural

• Behavioral

• Grouping

• Annotational

Structural Things (Noun)

•

•

•

•

•

•

•

•

Static parts of a model:

• Class

• Interface

• Collaboration

• Use Case

• Active Class

• Component

• Node

Behavioral Things (verb)

•

•

•

Dynamic behavior:

• Interaction (message exchange)

• State Machine (states and transitions)

Grouping Things

• • Package

Organizes model elements

Exists only at development time

Annotational Things (explanatory part)

• • Notes

 Used for comments and constraints

Relationships in UML

•

•

•

•

•

Four types:

• Dependency - - - - - >

• Association (Aggregation) ______

• Generalization _____|>

• Realization ------------|>

UML Diagrams

•

•

•

•

•

•

•

•

•

•

UML includes 9 diagrams:
Class, (S)
Object, (S)
Use Case, (D)
Sequence, (D & I)
Collaboration, (D & I)
Statechart, (D)
Activity, (D)
Component, (S)
Deployment (S)

Static vs Dynamic Modeling

•

•

•

•

•

•

•

•

•

•

•

Static:
• Class
• Object
• Component
• Deployment

Dynamic:
• Use Case
• Sequence
• Collaboration
• Statechart
• Activity

Library System Case Study

•

OBJECTIVE:
To draw the UML diagrams for library in which students
takes and returns books.

* DESCRIPTION:
Generally a college library consists of books and staff.
Students and faculty members utilizes the library books. So,
they are first made as members and are given passbooks
and tickets for taking issues. Library maintains an ID for each
library member. Members are allowed to take issues using
their respective ID’s and return those books after prescribed
time. If some books are issued or returned the library
database should be updated accordingly.

USECASE DIAGRAM

CLASS DIAGRAM

CONTINUATION

SEQUENCE DIAGRAM

COLLABORATION DIAGRAM

STATE DIAGRAM

Activity Diagram

Component Diagram

Deployment Diagram

ATM

States involved:
user, idle, active, selecting services, processing. Selecting
service
as substates-withdrawl balance enquiry

Description:
Initially, user is in idle state, and then he will insert the card
and becomes active. He enters the pin number and selects
the service he needs to take. If he need to withdrawl, he
enters the amount to be debited and he receives the
amount and then he receives the card and quits from ATM.
If he need the balance enquires, ATM process and gives
the receipt having information regarding balance.

ATM MACHINE

CLASS DIAGRAM

CONTINUATION

SEQUENCE DIAGRAM

COLLABORATION DIAGRAM

STATE DIAGRAM

ACTIVITY DIAGRAM

Component Diagram

Deployment Diagram

Rules of UML

•

•

•

•

•

•

Models must be well-formed:

• Names

• Scope

• Visibility

• Integrity

• Execution

Common Mechanisms

•

•

•

•

• Specifications

• Adornments

• Common divisions

• Extensibility mechanisms

Extensibility Mechanisms

•

•

•

• Stereotypes (<< >>)

• Extend UML vocabulary

• Used for classes, components,
relationships

Key Definitions

•

•

•

•

System: Organized subsystems for a
purpose

Subsystem: Group of related elements

Model: Simplified abstraction of reality

View: Projection of a system model

