
Page 1 of 17

Java - Inheritance

Namecheap

.COM domain for only for $6.49 OPEN

Java Inheritance

In Java programming, the inheritance is an important of concept of Java OOPs.
Inheritance is a process where one class acquires the properties (methods and
attributes) of another. With the use of inheritance, the information is made manageable
in a hierarchical order.

The class which inherits the properties of other is known as subclass (derived class, child
class) and the class whose properties are inherited is known as superclass (base class,
parent class).

Need of Java Inheritance

Implementation of Java Inheritance

To implement (use) inheritance in Java, the extends keyword is used. It inherits the
properties (attributes or/and methods) of the base class to the derived class. The word
"extends" means to extend functionalities i.e., the extensibility of the features.

Syntax to implement inheritance

Code Reusability: The basic need of an inheritance is to reuse the features. If you
have defined some functionality once, by using the inheritance you can easily use
them in other classes and packages.

Extensibility: The inheritance helps to extend the functionalities of a class. If you
have a base class with some functionalities, you can extend them by using the
inheritance in the derived class.

Implantation of Method Overriding: Inheritance is required to achieve one of
the concepts of Polymorphism which is Method overriding.

Achieving Abstraction: Another concept of OOPs that is abstraction also needs
inheritance.

 Home Whiteboard Graphing Calculator Online Compilers Practice Art

https://www.googleadservices.com/pagead/aclk?sa=L&ai=Ci3ftqXaEaduOIaOEwuIPxrKr2A_385fjggHwh9PFhhSR0_--yEYQASCIgL8UYLeEgID0MKAB7faV5gPIAQbgAgCoAwHIAwqqBNMCT9D0A4u7dH2BnNvNbAN7I5LCvEFHQPFH1GZ1jNrUIEUkP-AASMPoQtokF6VzSotkS_7VwfWrIWavuKtpIHl4vC-uNPrSd1leQFP6i9Wci2uAf_KoNA8MrY3QfoRzGAPB3qGDjTYPCb9Dcu63dGDhbwzZtj_JzJlxsqqdJS4RMMrimit1XRSlXVwRKace9B11ezXjISq_EUBtc7tvhYs1wOPAt7guXhP_aRjLUQZjE1E5QcRVWslS6hLGUc_fCkkmHCu6jV188regNWbRCe3uWvNYqQOeakw977TJwR8Ukn68gh23spNLDH7Yfw1slPj_d1x4-fKmV9zkVZQ3YgTAdLNEXgR3ixtJ8xAIg0R_7VryzUTKWnH_kWEJWvHGtFVtuBA3wKFnvHgxl4t1eg6LbY2lEF3En-a5T0HbUsjmQo3csCX6K15Xy6h4KNEVLKh4kAbhwATw5au4qQXgBAGIBYXeoJBJgAf7iOoZqAenzLECqAemvhuoB8zOsQKoB_PRG6gHltgbqAeqm7ECqAeOzhuoB5PYG6gH8OAbqAfulrECqAf-nrECqAevvrECqAfVyRuoB9m2sQKoB5oGqAf_nrECqAffn7ECqAf4wrECqAf7wrEC2AcB0ggvCIBhEAEYnQEyCIqCgICAgIAIOg2AQIDAgICAgKiAAqgDSL39wTpYoLSP3ZfCkgOxCW48wZl2CIsbgAoDmAsByAsBqg0CTkfIDQHiDRMIqJaQ3ZfCkgMVI4JQBh1G2Qr76g0TCJGkkd2XwpIDFSOCUAYdRtkK-_ANAogO____________AdgTDNAVAcoWAgoA-BYBgBcBshcOGAEqCjIzNzk2ODQyOTa6FwI4AaoYFwkAAAAANkQwQRIKMjM3OTY4NDI5NhgBshgJEgLIaxgBIgEB0BgB6BgBwhkCCAE&ae=1&gclid=EAIaIQobChMIm4eS3ZfCkgMVI4JQBh1G2Qr7EAEYASAAEgJICPD_BwE&num=1&cid=CAQSsQEA56J1edJ2e_3-YGEs_8z1qDqQXfamAQLj9hX5imVIiGgg37ZK9Sju5N5PDQkAuVs0Yn1YH7fjuiQZ1B45gLSRB5dqIATDD-3ob-tX3O8SmVg-PpdxDMTMMG8uPjslEed88JYr3tVhu7vpVpNiIreFsTFqpWxQAUC0tMtKP8WXR5WoFdw03sUqdtvIpY9Y-97H8unY-VCF6RX50rJ99qn0553ddEhJHDSkQWTE6s3npRYYAQ&sig=AOD64_0w4DuxrFVLbncAwoSPxHKCtb5QUQ&client=ca-pub-6163857992956964&rf=4&nb=2&adurl=https://www.namecheap.com/domains/registration/gtld/com/%3Fgad_source%3D5%26gad_campaignid%3D19629879045%26gclid%3DEAIaIQobChMIm4eS3ZfCkgMVI4JQBh1G2Qr7EAEYASAAEgJICPD_BwE
https://adssettings.google.com/whythisad?source=display&reasons=AWUvr32WXGo1vl2MifxQ55S31vDP6pa5jWsdoH0CLFZ5f56yPMmJRh38dq8e2dP9xBQX9Sbbm1K_0ffBwTOV9yxFK18yWsgWE3Cou2j5gxPwjznKW9OKkxBB4fdz9unBdMxIyywEMVVTE3Sb4auJKG-vIWQnNbG4VEc7zsh4VZFPhiM3z1FB9mZebExG6tQQJOlOmA7mvqMEq8Rz-yer9i6V8N9wE0mQv66yBZ8b2XAkhxV8_zbluZ6yoHXS1Jh2H35FrDSQzr_I31TYhAtqgfHfrReBm4PVSiw0G6KAXNP4-CQ_DBQzG6chxlKef5lKDoFPX_IF36oHqxPSAgvEBP7YK9XAGu6C_eqC0i9YSfHdE8BZtbHyq0Le3zTBHuu1Xl2QxWaCIViC5VJi48Pc_SawIt3CZr9WVOWvuFdw7UfInmyf3Vtg1sC4GjOxyEsvIasXBcvYUYBTyNmniIE_v-KLrRxkimPLfnLu-_qUiYGhWnYE-w-Y_aDRhZVrDnNySj4uvGZxQ1Q2zJUjosHU3mmm0si-Xf8aenVtfEQ--fceUYAmRu208Y8TTBVHRiRb-g0thmMst63h3NDBXjowBky82lnC0761sG-abWNupK0sB0viLpyNHnYA4p_1HtAcw6JCZy-LfHu4syokyuv2SaNmJTq6BzQDStCwg7JJnxZMAZDDK_g32VEkLrh4JVzyikuHSsP4iGAz0d6M4jUhBTfNF2_mhXy7cJ2_gdsD5sEk_8MwJOjnX7RNojwLDUn1x9eAjcK7TrqNG5xGw7Tu1jysLaXXe-wLHRit_gMLyTVZxpKoZiwWCGV16eboszzbSSUWv9Fiyr4RvtXT4UKBe5nILx7ATpjPhCg6abtYSLGBJwqOGe608fJQ0IAg-wGiE_rH7G4jAdZ2jxwxpxcdhwma648li8BP1ex0dFylPqIJoViVUbbOpDvkPDXeEtkSMZZbcSV3V_TTfmO8cAb-UCTiwpuuQnCjjoUP214puu81Rf755UPdqJzMytNFX22kfIszLbmckDy1BE-qJMWtmux8IekhhL4lYCurGtszp4JwFCp5s0CIN3Q6h3CNyv-RUVt4DhhZ7ucgrpRX8oZDybikRYxWM_N8cKIk7IMOaZa3C7hk6_ShMs-kNhq5Q6ol0_0INE_58rjKXlq0yCuhrMqgUvYSS9cnplDmSmuZYbElHEeBFzT3NHcR7a9h327pu94mQsei2xkr3YGiqoPvPCIBEtic3FLNUURZv-fyooIT--YUoE1aOqfzhnq_dhQIndexVvlfxO-VnR9oYTh-bUpupi7XjWU04UlUz-21MaGcYQEGKPEsPEiEM4-Ofz8e7C_NQMggtUjXYAfSkU89cQGFp5WCPik7nJPhjhwvxbgIKnKh6sbDnamc9kNheY4TobJhdGIehLGfdZ0KWEmMKUelM-1T_QnYQZ4em2UVeQhkxiM4183i7kfIyOIZcgZAQUzU7VlNtq3x_bLNAXcVbGxHcOJFy9H5DIA4jBmgQcxji64m-F70XqLfa4JP77M_hFVWvr4yX9c2esmQp810fb9ryk_urTjFazIfIkVeWTCqE7I0OvTOGpXlGuUwXHu3G6NBydDuJ02o5Gjt8EJ5NUq5b8q4HrYozJS8qY2AFpcdeTsjPoz9ykK4La_yCL1bjToN_ow2kxgEVo-5mYdqQLhv4JHd-k4ZhEs5WhRNhVHl6mHjtGxfqRFTd5JQ71pWaeiz44SjJvObJg3PIng8MoEGVmhryLX6jYOMKQ7EtNupvd4z2BVwzrXo67ZFAT_ytCRNcOYa-l5h5-ZjgPSYIGtKaLr7nibe161rRz8eZuERKv7aJYjjWmARLcZVe6jyU7mw-aep-7oAG1DmyFwIZxSgXf6yLle83NboOxK4L38BhbHxq0RrSkFq7gI6vnNbLFj9OeYiOHITRfRdYexMrZFPnZEyGpuwook9w8kSKO1BeEzs4TGpU1hbGvBvEhJAr_JAeycNLF_gRR-jAe27zl_deWSN3_yPrMhdvm25KcjTx6hYo5ttRsOCN103f-JB-3ImY19mKTM4V88_RR293YI91s3W71zaBWXz-yRReSXpFAbv9vNUskIUrpsLQT1g2vfHZa6bkUFeGlGucsHt9z9oceYCKmFUZ2mi9CTf1FzVVdCme87hVGF4H7eqzPv1p4LK6m3__czCtvhO_p0RidNyg6PbARTNbby0QxJ7OCijnSy0F91-DjxyR_rdksOCqUy80L-VbjMmQNaNsy1kxUOXII_MzPz3IGie7bBzf-FiagbCB8RX1IVwl5sTrobxAW6Q52PI4VpkgeupVix_4R14g8DQdTHDR2rHCX9jpLsFtbYJ2wItk2xH9jmAjaHC_y4v8R8YmuO6MjKfgc0ROkR58VdpeABXN8If3i6kPgvdu3lfTf8qkwMpWjJ_ri-1vMICtqLQWBOom8yd4MN-14l6zz_w6RQNS7VZSJqE3F4XCDaEZmmGWXpdit9A&opi=122715837
https://adssettings.google.com/whythisad?source=display&reasons=AWUvr32WXGo1vl2MifxQ55S31vDP6pa5jWsdoH0CLFZ5f56yPMmJRh38dq8e2dP9xBQX9Sbbm1K_0ffBwTOV9yxFK18yWsgWE3Cou2j5gxPwjznKW9OKkxBB4fdz9unBdMxIyywEMVVTE3Sb4auJKG-vIWQnNbG4VEc7zsh4VZFPhiM3z1FB9mZebExG6tQQJOlOmA7mvqMEq8Rz-yer9i6V8N9wE0mQv66yBZ8b2XAkhxV8_zbluZ6yoHXS1Jh2H35FrDSQzr_I31TYhAtqgfHfrReBm4PVSiw0G6KAXNP4-CQ_DBQzG6chxlKef5lKDoFPX_IF36oHqxPSAgvEBP7YK9XAGu6C_eqC0i9YSfHdE8BZtbHyq0Le3zTBHuu1Xl2QxWaCIViC5VJi48Pc_SawIt3CZr9WVOWvuFdw7UfInmyf3Vtg1sC4GjOxyEsvIasXBcvYUYBTyNmniIE_v-KLrRxkimPLfnLu-_qUiYGhWnYE-w-Y_aDRhZVrDnNySj4uvGZxQ1Q2zJUjosHU3mmm0si-Xf8aenVtfEQ--fceUYAmRu208Y8TTBVHRiRb-g0thmMst63h3NDBXjowBky82lnC0761sG-abWNupK0sB0viLpyNHnYA4p_1HtAcw6JCZy-LfHu4syokyuv2SaNmJTq6BzQDStCwg7JJnxZMAZDDK_g32VEkLrh4JVzyikuHSsP4iGAz0d6M4jUhBTfNF2_mhXy7cJ2_gdsD5sEk_8MwJOjnX7RNojwLDUn1x9eAjcK7TrqNG5xGw7Tu1jysLaXXe-wLHRit_gMLyTVZxpKoZiwWCGV16eboszzbSSUWv9Fiyr4RvtXT4UKBe5nILx7ATpjPhCg6abtYSLGBJwqOGe608fJQ0IAg-wGiE_rH7G4jAdZ2jxwxpxcdhwma648li8BP1ex0dFylPqIJoViVUbbOpDvkPDXeEtkSMZZbcSV3V_TTfmO8cAb-UCTiwpuuQnCjjoUP214puu81Rf755UPdqJzMytNFX22kfIszLbmckDy1BE-qJMWtmux8IekhhL4lYCurGtszp4JwFCp5s0CIN3Q6h3CNyv-RUVt4DhhZ7ucgrpRX8oZDybikRYxWM_N8cKIk7IMOaZa3C7hk6_ShMs-kNhq5Q6ol0_0INE_58rjKXlq0yCuhrMqgUvYSS9cnplDmSmuZYbElHEeBFzT3NHcR7a9h327pu94mQsei2xkr3YGiqoPvPCIBEtic3FLNUURZv-fyooIT--YUoE1aOqfzhnq_dhQIndexVvlfxO-VnR9oYTh-bUpupi7XjWU04UlUz-21MaGcYQEGKPEsPEiEM4-Ofz8e7C_NQMggtUjXYAfSkU89cQGFp5WCPik7nJPhjhwvxbgIKnKh6sbDnamc9kNheY4TobJhdGIehLGfdZ0KWEmMKUelM-1T_QnYQZ4em2UVeQhkxiM4183i7kfIyOIZcgZAQUzU7VlNtq3x_bLNAXcVbGxHcOJFy9H5DIA4jBmgQcxji64m-F70XqLfa4JP77M_hFVWvr4yX9c2esmQp810fb9ryk_urTjFazIfIkVeWTCqE7I0OvTOGpXlGuUwXHu3G6NBydDuJ02o5Gjt8EJ5NUq5b8q4HrYozJS8qY2AFpcdeTsjPoz9ykK4La_yCL1bjToN_ow2kxgEVo-5mYdqQLhv4JHd-k4ZhEs5WhRNhVHl6mHjtGxfqRFTd5JQ71pWaeiz44SjJvObJg3PIng8MoEGVmhryLX6jYOMKQ7EtNupvd4z2BVwzrXo67ZFAT_ytCRNcOYa-l5h5-ZjgPSYIGtKaLr7nibe161rRz8eZuERKv7aJYjjWmARLcZVe6jyU7mw-aep-7oAG1DmyFwIZxSgXf6yLle83NboOxK4L38BhbHxq0RrSkFq7gI6vnNbLFj9OeYiOHITRfRdYexMrZFPnZEyGpuwook9w8kSKO1BeEzs4TGpU1hbGvBvEhJAr_JAeycNLF_gRR-jAe27zl_deWSN3_yPrMhdvm25KcjTx6hYo5ttRsOCN103f-JB-3ImY19mKTM4V88_RR293YI91s3W71zaBWXz-yRReSXpFAbv9vNUskIUrpsLQT1g2vfHZa6bkUFeGlGucsHt9z9oceYCKmFUZ2mi9CTf1FzVVdCme87hVGF4H7eqzPv1p4LK6m3__czCtvhO_p0RidNyg6PbARTNbby0QxJ7OCijnSy0F91-DjxyR_rdksOCqUy80L-VbjMmQNaNsy1kxUOXII_MzPz3IGie7bBzf-FiagbCB8RX1IVwl5sTrobxAW6Q52PI4VpkgeupVix_4R14g8DQdTHDR2rHCX9jpLsFtbYJ2wItk2xH9jmAjaHC_y4v8R8YmuO6MjKfgc0ROkR58VdpeABXN8If3i6kPgvdu3lfTf8qkwMpWjJ_ri-1vMICtqLQWBOom8yd4MN-14l6zz_w6RQNS7VZSJqE3F4XCDaEZmmGWXpdit9A&opi=122715837
https://www.tutorialspoint.com/java/java_oops_concepts.htm
https://www.tutorialspoint.com/java/java_class_methods.htm
https://www.tutorialspoint.com/java/java_class_attributes.htm
https://www.tutorialspoint.com/index.htm
https://www.tutorialspoint.com/whiteboard.htm
https://www.tutorialspoint.com/online_graphing_calculator.htm
https://www.tutorialspoint.com/compilers/index.htm
https://www.tutorialspoint.com/practice/index.htm
https://www.tutorialspoint.com/articles/index.php

Page 2 of 17

Consider the below syntax to implement (use) inheritance in Java:

class Super {

}

class Sub extends Super {

}

Java Inheritance Example

Following is an example demonstrating Java inheritance. In this example, you can
observe two classes namely Calculation and My_Calculation.

Using extends keyword, the My_Calculation inherits the methods addition() and
Subtraction() of Calculation class.

Copy and paste the following program in a file with name My_Calculation.java

Java Program to Implement Inheritance

class Calculation {

 int z;

 public void addition(int x, int y) {

 z = x + y;

 System.out.println("The sum of the given numbers:"+z);

 }

 public void Subtraction(int x, int y) {

 z = x - y;

 System.out.println("The difference between the given numbers:"+z);

 }

}

public class My_Calculation extends Calculation {

 public void multiplication(int x, int y) {

 z = x * y;

Page 3 of 17

 System.out.println("The product of the given numbers:"+z);

 }

 public static void main(String args[]) {

 int a = 20, b = 10;

 My_Calculation demo = new My_Calculation();

 demo.addition(a, b);

 demo.Subtraction(a, b);

 demo.multiplication(a, b);

 }

}

Compile and execute the above code as shown below.

javac My_Calculation.java

java My_Calculation

After executing the program, it will produce the following result −

Output

The sum of the given numbers:30

The difference between the given numbers:10

The product of the given numbers:200

In the given program, when an object to My_Calculation class is created, a copy of the
contents of the superclass is made within it. That is why, using the object of the subclass
you can access the members of a superclass.

The Superclass reference variable can hold the subclass object, but using that variable
you can access only the members of the superclass, so to access the members of both
classes it is recommended to always create reference variable to the subclass.

Page 4 of 17

If you consider the above program, you can instantiate the class as given below. But
using the superclass reference variable (cal in this case) you cannot call the method
multiplication(), which belongs to the subclass My_Calculation.

Calculation demo = new My_Calculation();

demo.addition(a, b);

demo.Subtraction(a, b);

Note − A subclass inherits all the members (fields, methods, and nested classes) from
its superclass. Constructors are not members, so they are not inherited by subclasses,
but the constructor of the superclass can be invoked from the subclass.

Java Inheritance: The super Keyword

The super keyword is similar to this keyword. Following are the scenarios where the
super keyword is used.

Differentiating the Members

If a class is inheriting the properties of another class. And if the members of the
superclass have the names same as the sub class, to differentiate these variables we use
super keyword as shown below.

super.variable

super.method();

Sample Code

This section provides you a program that demonstrates the usage of the super keyword.

In the given program, you have two classes namely Sub_class and Super_class, both
have a method named display() with different implementations, and a variable named
num with different values. We are invoking display() method of both classes and printing
the value of the variable num of both classes. Here you can observe that we have used
super keyword to differentiate the members of superclass from subclass.

Copy and paste the program in a file with name Sub_class.java.

It is used to differentiate the members of superclass from the members of
subclass, if they have same names.

It is used to invoke the superclass constructor from subclass.

Page 5 of 17

Example

class Super_class {

 int num = 20;

 // display method of superclass

 public void display() {

 System.out.println("This is the display method of superclass");

 }

}

public class Sub_class extends Super_class {

 int num = 10;

 // display method of sub class

 public void display() {

 System.out.println("This is the display method of subclass");

 }

 public void my_method() {

 // Instantiating subclass

 Sub_class sub = new Sub_class();

 // Invoking the display() method of sub class

 sub.display();

 // Invoking the display() method of superclass

 super.display();

 // printing the value of variable num of subclass

 System.out.println("value of the variable named num in sub class:"+

sub.num);

 // printing the value of variable num of superclass

 System.out.println("value of the variable named num in super class:"+

super.num);

 }

 public static void main(String args[]) {

 Sub_class obj = new Sub_class();

Page 6 of 17

 obj.my_method();

 }

}

Compile and execute the above code using the following syntax.

javac Super_Demo

java Super

On executing the program, you will get the following result −

Output

This is the display method of subclass

This is the display method of superclass

value of the variable named num in sub class:10

value of the variable named num in super class:20

Invoking Superclass Constructor

If a class is inheriting the properties of another class, the subclass automatically acquires
the default constructor of the superclass. But if you want to call a parameterized
constructor of the superclass, you need to use the super keyword as shown below.

super(values);

Sample Code

The program given in this section demonstrates how to use the super keyword to invoke
the parametrized constructor of the superclass. This program contains a superclass and a
subclass, where the superclass contains a parameterized constructor which accepts a
integer value, and we used the super keyword to invoke the parameterized constructor
of the superclass.

Copy and paste the following program in a file with the name Subclass.java

Example

Page 7 of 17

class Superclass {

 int age;

 Superclass(int age) {

 this.age = age;

 }

 public void getAge() {

 System.out.println("The value of the variable named age in super class

is: " +age);

 }

}

public class Subclass extends Superclass {

 Subclass(int age) {

 super(age);

 }

 public static void main(String args[]) {

 Subclass s = new Subclass(24);

 s.getAge();

 }

}

Compile and execute the above code using the following syntax.

javac Subclass

java Subclass

Output

The value of the variable named age in super class is: 24

IS-A Relationship

IS-A is a way of saying: This object is a type of that object. Let us see how the extends
keyword is used to achieve inheritance.

public class Animal {

}

Page 8 of 17

public class Mammal extends Animal {

}

public class Reptile extends Animal {

}

public class Dog extends Mammal {

}

Now, based on the above example, in Object-Oriented terms, the following are true −

Now, if we consider the IS-A relationship, we can say −

With the use of the extends keyword, the subclasses will be able to inherit all the
properties of the superclass except for the private properties of the superclass.

We can assure that Mammal is actually an Animal with the use of the instance operator.

Example

class Animal {

}

class Mammal extends Animal {

}

Animal is the superclass of Mammal class.

Animal is the superclass of Reptile class.

Mammal and Reptile are subclasses of Animal class.

Dog is the subclass of both Mammal and Animal classes.

Mammal IS-A Animal

Reptile IS-A Animal

Dog IS-A Mammal

Hence: Dog IS-A Animal as well

Page 9 of 17

class Reptile extends Animal {

}

public class Dog extends Mammal {

 public static void main(String args[]) {

 Animal a = new Animal();

 Mammal m = new Mammal();

 Dog d = new Dog();

 System.out.println(m instanceof Animal);

 System.out.println(d instanceof Mammal);

 System.out.println(d instanceof Animal);

 }

}

Output

true

true

true

Since we have a good understanding of the extends keyword, let us look into how the
implements keyword is used to get the IS-A relationship.

Generally, the implements keyword is used with classes to inherit the properties of an
interface. Interfaces can never be extended by a class.

Example

public interface Animal {

}

public class Mammal implements Animal {

}

public class Dog extends Mammal {

}

Java Inheritance: The instanceof Keyword

Page 10 of 17

Let us use the instanceof operator to check determine whether Mammal is actually an
Animal, and dog is actually an Animal.

Example

interface Animal{}

class Mammal implements Animal{}

public class Dog extends Mammal {

 public static void main(String args[]) {

 Mammal m = new Mammal();

 Dog d = new Dog();

 System.out.println(m instanceof Animal);

 System.out.println(d instanceof Mammal);

 System.out.println(d instanceof Animal);

 }

}

Output

true

true

true

HAS-A relationship

These relationships are mainly based on the usage. This determines whether a certain
class HAS-A certain thing. This relationship helps to reduce duplication of code as well
as bugs.

Lets look into an example −

Example

public class Vehicle{}

public class Speed{}

Page 11 of 17

public class Van extends Vehicle {

 private Speed sp;

}

This shows that class Van HAS-A Speed. By having a separate class for Speed, we do not
have to put the entire code that belongs to speed inside the Van class, which makes it
possible to reuse the Speed class in multiple applications.

In Object-Oriented feature, the users do not need to bother about which object is doing
the real work. To achieve this, the Van class hides the implementation details from the
users of the Van class. So, basically what happens is the users would ask the Van class
to do a certain action and the Van class will either do the work by itself or ask another
class to perform the action.

Types of Java Inheritance

In Java, there are mainly three types of inheritances Single, Multilevel, and
Hierarchical. Java does not support Multiple and Hybrid inheritance.

1. Java Single Inheritance

Page 12 of 17

The inheritance in which there is only one base class and one derived class is known as
single inheritance. The single (or, single-level) inheritance inherits data from only one
base class to only one derived class.

Example of Java Single Inheritance

class One {

 public void printOne() {

 System.out.println("printOne() method of One class.");

 }

}

public class Main extends One {

 public static void main(String args[]) {

 // Creating object of the derived class (Main)

 Main obj = new Main();

 // Calling method

 obj.printOne();

 }

}

Output

printOne() method of One class.

2. Java Multilevel Inheritance

The inheritance in which a base class is inherited to a derived class and that derived
class is further inherited to another derived class is known as multi-level inheritance.
Multilevel inheritance involves multiple base classes.

Example of Java Multilevel Inheritance

Page 13 of 17

class One {

 public void printOne() {

 System.out.println("printOne() method of One class.");

 }

}

class Two extends One {

 public void printTwo() {

 System.out.println("printTwo() method of Two class.");

 }

}

public class Main extends Two {

 public static void main(String args[]) {

 // Creating object of the derived class (Main)

 Main obj = new Main();

 // Calling methods

 obj.printOne();

 obj.printTwo();

 }

}

Output

printOne() method of One class.

printTwo() method of Two class.

3. Java Hierarchical Inheritance

The inheritance in which only one base class and multiple derived classes is known as
hierarchical inheritance.

Example of Java Hierarchical Inheritance

// Base class

class One {

Chapters Categories

https://www.tutorialspoint.com/
https://www.tutorialspoint.com/top-categories.htm

Page 14 of 17

 public void printOne() {

 System.out.println("printOne() Method of Class One");

 }

}

// Derived class 1

class Two extends One {

 public void printTwo() {

 System.out.println("Two() Method of Class Two");

 }

}

// Derived class 2

class Three extends One {

 public void printThree() {

 System.out.println("printThree() Method of Class Three");

 }

}

// Testing CLass

public class Main {

 public static void main(String args[]) {

 Two obj1 = new Two();

 Three obj2 = new Three();

 //All classes can access the method of class One

 obj1.printOne();

 obj2.printOne();

 }

}

Output

printOne() Method of Class One

printOne() Method of Class One

A very important fact to remember is that Java does not support multiple and hybrid
inheritances. This means that a class cannot extend more than one class. Therefore
following is illegal −

Example

Page 15 of 17

TOP TUTORIALS

Python Tutorial

Java Tutorial

C++ Tutorial

C Programming Tutorial

C# Tutorial

PHP Tutorial

R Tutorial

HTML Tutorial

CSS Tutorial

JavaScript Tutorial

SQL Tutorial

TRENDING TECHNOLOGIES

Cloud Computing Tutorial

Amazon Web Services Tutorial

Microsoft Azure Tutorial

Git Tutorial

Ethical Hacking Tutorial

Docker Tutorial

Kubernetes Tutorial

DSA Tutorial

Spring Boot Tutorial

SDLC Tutorial

Unix Tutorial

CERTIFICATIONS

Business Analytics Certification

public class extends Animal, Mammal{}

However, a class can implement one or more interfaces, which has helped Java get rid of
the impossibility of multiple inheritance.

https://www.tutorialspoint.com/python/index.htm
https://www.tutorialspoint.com/java/index.htm
https://www.tutorialspoint.com/cplusplus/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/csharp/index.htm
https://www.tutorialspoint.com/php/index.htm
https://www.tutorialspoint.com/r/index.htm
https://www.tutorialspoint.com/html/index.htm
https://www.tutorialspoint.com/css/index.htm
https://www.tutorialspoint.com/javascript/index.htm
https://www.tutorialspoint.com/sql/index.htm
https://www.tutorialspoint.com/cloud_computing/index.htm
https://www.tutorialspoint.com/amazon_web_services/index.htm
https://www.tutorialspoint.com/microsoft_azure/index.htm
https://www.tutorialspoint.com/git/index.htm
https://www.tutorialspoint.com/ethical_hacking/index.htm
https://www.tutorialspoint.com/docker/index.htm
https://www.tutorialspoint.com/kubernetes/index.htm
https://www.tutorialspoint.com/data_structures_algorithms/index.htm
https://www.tutorialspoint.com/spring_boot/index.htm
https://www.tutorialspoint.com/sdlc/index.htm
https://www.tutorialspoint.com/unix/index.htm
https://market.tutorialspoint.com/certification/business-analytics-certification-2023/index.asp

