Let's get started with...

Logic!



Logic

» Crucial for mathematical reasoning
- Important for program design
+ Used for designing electronic circuitry

* (Propositional )Logic is a system based on
propositions.

* A proposition is a (declarative) statement
that is either ftrue or false (not both).

+ We say that the truth value of a proposition
is either true (T) or false (F).

* Corresponds to 1 and O in digital circuits



The Statement/Proposition Game

"Elephants are bigger than mice."

Is this a statement? yes
Is this a proposition? yes

What is the truth value
of the proposition? frue



The Statement/Proposition Game

2520 <111
Is this a statement? yes
Is this a proposition? yes

What is the truth value
of the proposition?



The Statement/Proposition Game

“Y > 5”
Is this a statement? yes
Is this a proposition?

Its truth value depends on the value of y,
but this value is not specified.

We call this type of statement a
propositional function or open sentence.



The Statement/Proposition Game

“Today is January 27 and 99<5."

Is this a statement? yes
Is this a proposition? yes

What is the truth value
of the proposition?



The Statement/Proposition Game

“Please do not fall asleep.”

Is this a statement?

It's a request.

Is this a proposition?

Only statements can be propositions.



The Statement/Proposition Game

"If the moon is made of cheese,
then I will be rich.”

Is this a statement? yes
Is this a proposition? yes

What is the truth value
of the proposition?



The Statement/Proposition Game
"x <y if and only if y > x."

Is this a statement? yes
Is this a proposition? yes

.. because its truth value
does not depend on
specific values of x and y.

What is the truth value
of the proposition? frue
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Combining Propositions

As we have seen in the previous examples,
one or more propositions can be combined
to form a single compound proposition.

We formalize this by denoting propositions
with letters such as p, g, r, s, and
introducing several logical operators or
logical connectives.



Logical Operators (Connectives)

We will examine the following logical operators:

* Negation (NOT, )

* Conjunction (AND, /)

» Disjunction  (OR, V)

- Exclusive-or (XOR, ©© )

» Implication  (if - then, — )
(

» Biconditional (if and only if, )

Truth tables can be used to show how these
operators can combine:proposifions to
combound probosgitions



Negation (NOT)

Unary Operator, Symbol: —
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true (T)

true (T)




Conjunction (AND)
Binary Operator, Symbol: A
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Disjunction (OR)
Binary Operator, Symbol: v
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Exclusive Or (XOR)
Binary Operator, Symbol: &
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Implication (if - then)
Binary Operator, Symbol:
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Biconditional (if and only if)

Binary Operator, Symbol: <
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Statements and Operators

Statements and operators can be combined in any
way to form new statements.

P 1 Q| -P[-Q]|EPVMQ)
I 'T' = L =
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Statements and Operations

Statements and operators can be combined in any
way to form new statements.

P | Q |PAQ[=(PAQ) [(=P)V(-Q)
i e
T T T

T 0

i T
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Exercises

* To take discrete mathematics, you must have
taken calculus or a course in computer science.

* When you buy a new car from Acme Motor
Company, you get $2000 back in cash or a 2%
car loan.

» School is closed if more than 2 feet of snow
falls or if the wind chill is below -100,



Exercises

* To take discrete mathematics, you must have
taken calculus or a course in computer science.
- P: take discrete mathematics
- Q: take calculus
- R: fake a course in computer science

‘P> Q VR
* Problem with proposition R
- What if I want to represent "take CMSC201"?



Exercises

* When you buy a new car from Acme Motor
Company, you get $2000 back in cash or a 2%
car loan.

- P: buy a car from Acme Motor Company
- Q: get $2000 cash back
- R: get a 2% car loan

P> QDR

* Why use XOR here? - example of ambiguity of
natural languages



Exercises

» School is closed if more than 2 feet of snow
falls or if the wind chill is below -100.

- P: School is closed
- Q: 2 feet of snow falls
- R: wind chill is below -100

*QAR—>P

* Precedence among operators:
— o N i



Equivalent Statements

P Q | =(PrQ) | (FPIV(=Q) | =(PAQ)(=P)V(-Q)
T i I - I
T il il 1

If il 1 1

—a—

The statements —(PAQ) and (—P) v (—Q) are logically
equivalent, since they have the same truth table, or put
itin unu‘rher' way, ﬂ(PAQ) H(—ﬁP) (ﬂQ} is always Tr‘ua
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Tautologies and Contradictions

A tautology is a statement that is always true.
Examples:

- Rv(—R)

- —=(PAQ) & (=P)v(= Q)
A contfradiction is a statement that is always false.
Examples:

- RA(=R)

- (=P A Q)& (=P)v(-Q))

The negation of any tautology is a contradiction, and
the negation of any contradiction is a tautology.



Equivalence

Definition: two propositional statements
S1 and S2 are said to be (logically)
equivalent, denoted S1 = S2 if

- They have the same truth fable, or
- Sl & S2 is a tautology

Equivalence can be established by
- Constructing truth tables
- Using equivalence laws (Table 5 in Section 1.2)



Equivalence

Equivalence laws
- Identity laws, P Ti=IP,
- Domination laws, PAF=F,
- Idempotent laws, P AP=P,
- Double negation law, — (—~P)= P
- Commutative laws, P A Q= Q AP,
- Associative laws, PA(QAR)E (PArQ)AR,
- Distributive laws, PAQVRE PAQ)v(PAR),
- De Morgan's laws, —(PAQ)=(—P)v (- Q)
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Exercises

» Show that P > Q = = P v Q: by truth table

» Show that (P > Q) A (P> R)=P — (Q » R):
by equivalence laws (q20, p27):

- Law with implication on both sides
- Distribution law on LHS



Summary, Sections 1.1, 1.2

* Proposition
- Statement, Truth value,
- Proposition, Propositional symbol, Open proposition
* Operators
- Define by truth tables
- Composite propositions
- Tautology and contradiction
» Equivalence of propositional statements
- Definition

- Proving equivalence (by truth table or equivalence
laws)
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Propositional Functions & Predicates

Propositional function (open sentence):

statement involving one or more variables,
e.g.i x-3 > 9.

Let us call this propositional function P(x),

where P is the predicate and x is the variable.
What is the truth value of P(2) ?

What is the truth value of P(8) ?
What is the truth value of P(9) ? true

When a variable is given a value, it is said to be
instantiated

Truth value depends on value of variable
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Propositional Functions

Let us consider the propositional function
Q(x, y, z) defined as:

X+y=2z

Here, Q is the predicate and x, y, and z are the
variables.
What is the truth value of Q(2, 3,5)?  frue

What is the truth value of Q(0, 1, 2) ? :
What is the truth value of Q(9, -9,0)? frue

A propositional function (predicate) becomes a
proposition when all its variables are
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Propositional Functions

Other examples of propositional functions

Person(x), which is true if x is a person
Person(Socrates) = T
Person(dolly-the-sheep) = F

CSCourse(x), which is true if x is a
computer science course
CSCourse(CMSC201) =T
CSCourse(MATH155) = F

How do we say

All humans are mortal
One CS course

1S 20



Universal Quantification

Let P(x) be a predicate (propositional function).

Universally quantified sentence:
For all x in the univ scourse P(x) is true.

Using the universal quantifier V:
vx P(x) “forall x P(x)" or "for every x P(x)"

(Note: Vx P(x) is either true or false, so it isa
proposition, not a propositional function.)



Universal Quantification

Example: Let the universe of discourse be all
people

S(x): x is a UMBC student.

G(x): x is a genius.
What does Vx (5(x) — G(x)) mean ?

"If x is a UMBC student, then x is a genius.” or
"All UMBC students are geniuses.”

If the universe of discourse is all UMBC students,
then the same statement can be written as

VX 6(X)



Existential Quantification

Existentially quantified sentence:

There exists an x in the universe of discourse
for which P(x) is true.

Using the existential quantifier 3:
Ix P(x) “There is an x such that P(x)."
"There is at least one x such that P(x).”

(Note: 3x P(x) is either true or false, so it is a
proposition, but no propositional function.)



Existential Quantification

Example:
P(x): x is a UMBC professor.
G(x): x is a genius.

What does Ix (P(x) A G(x)) mean ?

"There is an x such that x is a UMBC professor
and X is a genius.”

or
"At least one UMBC professor is a genius.”



Quantification

Another example:
Let the universe of discourse be the real numbers.

What does Vx3Jy (x +y = 320) mean ?

"For every x there exists ay so that x +y = 320."

Is it true? yes

Is it true for the natural numbers?



Disproof by Counterexample

A counterexample to ¥x P(x) is an object ¢ so
that P(c) is false.

Statements such as Vx (P(x) > Q(x)) can be
disproved by simply providing a counterexample.

Statement: "All birds can fly."
Disproved by counterexample: Penguin.



Negation
—(Vx P(x)) is logically equivalent to 3x (—P(x)).
—(3x P(x)) is logically equivalent to ¥x (—P(x)).
See Table 2 in Section 1.3.

This is de Morgan's law for quantifiers



Negation

Examples

Not all roses are red
—vx (Rose(x) — Red(x))
Ix (Rose(x) » —Red(x))

Nobody is perfect
—3dx (Person(x) » Perfect(x))
vx (Person(x) — —Perfect(x))
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Nested Quantifier

A predicate can have more than one variables.
- S(x,y, 2): z is the sum of x and y
- F(x, y): x and y are friends
We can quantify individual variables in different
ways
- VX,Y,2(5(x,Y,2) > (x<=z Ay <= 2))
- Ix Yy Vz (F(x,y) A F(x, Z) » (y I= 2) > —F(y, 2)



Nested Quantifier

Exercise: translate the following English
sentence into logical expression

“There is a rational number in between every
pair of distinct rational numbers”

Use predicate Q(x), which is true when x
is a rational humber

Xy (QMX) A Q(y) A (x<y) >
U (QU) A (X <u) A (U<y)))



Summary, Sections 1.3, 1.4

* Propositional functions (predicates)

» Universal and existential quantifiers,
and the duality of the two

* When predicates become propositions

- All of its variables are instantiated
- All of its variables are quantified

» Nested quantifiers
- Quantifiers with negation

» Logical expressions formed by
predicates, operators, and quantifiers



Let’s proceed to...

Mathematical
Reasoning



Mathematical Reasoning

We need mathematical reasoning to

* determine whether a mathematical argument is
correct or incorrect and
« construct mathematical arguments.

Mathematical reasoning is not only important for
conducting proofs and program verification, but
also for artificial intelligence systems (drawing

logical inferences from knowledge and facts).

We focus on deductive proofs
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Terminology

An axiom is a basic assumption about

mathematical structure that needs no proof.
- Things known to be frue (facts or proven theorems)
- Things believed to be true but cannot be proved

We can use a proof to demonstrate that a
particular statement is true. A proof consists of a
sequence of statements that form an argument.

The steps that connect the statements in such a
sequence are the rules of inference.

Cases of incorrect reasoning are called fallacies.



Terminology

A theorem is a statement that can be shown to be
frue.

A lemma is a simple theorem used as an
intermediate result in the proof of another
theorem.

A corollary is a proposition that follows directly
from a theorem that has been proved.

A conjecture is a statement whose truth value is
unknown. Once it is proven, it becomes a theorem.



Proofs

A theorem often has two parts
- Conditions (premises, hypotheses)
- conclusion

A correct (deductive) proof is to establish that
- If the conditions are true then the conclusion is true
- I.e., Conditions — conclusion is a tautology

Often there are missing pieces between

conditions and conclusion. Fill it by an argument
- Using conditions and axioms
- Statements in the argument connected by proper
rules of inference

CMSC 203 i



Rules of Inference

Rules of inference provide the justification of
the steps used in a proof.

One important rule is called modus ponens or the
law of detachment. It is based on the tautology
(p~(p— q)) > q. We write it in the following
way:

The two hypotheses p and p —» q are
P written in a column, and the conclusion
P— 9 below a bar, where .. means "therefore”.

g



Rules of Inference

The general form of a rule of inference is:

P1 The rule states that if p; and p, and ...
P2 and p, are all true, then q is true as well.

bn Each rule is an established tautology of
PiAP2A ... ANPp—(q
These rules of inference can be used in
any mathematical argument and do not
require any proof.
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Rules of Inference

—q
P
_ Addition pEdHocts
. pvg tollens

— P
BAd I P :g Hypothetical
Simplification q syllogism

.. p—> r (chaining)
i Pvq
q Conjunction p Disjunctive
- pA syllogism
h q q ( -::.')
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Arguments

Just like a rule of inference, an argument consists
of one or more hypotheses (or premises) and a
conclusion.

We say that an argument is valid, if whenever all
ifs hypotheses are frue, its conclusion is also true.

However, if any hypothesis is false, even a valid
argument can lead to an incorrect conclusion.

Proof: show that hypotheses — conclusion is true
using rules of inference



Arguments
Example:

"If 101 is divisible by 3, then 1012 is divisible by 9.
101 is divisible by 3. Conﬂequenﬂy, 1012 is dw:s:ble
by 9 1}

Although the argument is valid, its conclusion is

incorrect, because one of the hypotheses is false
("101 is divisible by 3.").

If in the above argument we replace 101 with 102,
we could correctly conclude that 1022 is divisible
by 9.



Arguments

Which rule of inference was used in the last
argument?

p: "101 is divisible by 3."
q: "1012 is divisible by 9."

P
p—>q Modus

ponens

5. q

Unfortunately, one of the hypotheses (p) is false.
Therefore, the conclusion q is incorrect.
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Arguments

Another example:

“If it rains today, then we will not have a
barbeque today. If we do not have a barbeque
today, then we will have a barbeque tomorrow.
Therefore, if it rains today, then we will have a
barbeque tomorrow."

This is a valid argument: If its hypotheses are
true, then its conclusion is also true.



Arguments

Let us formalize the previous argument:

p: "It is raining today."
g: "We will not have a barbecue today.”
r: “We will have a barbecue tomorrow."

So the argument is of the following form:

P—q _
qor Hypothetical

syllogism

“Po>pr



Arguments
Another example:

Gary is either intelligent or a good actor.
If Gary is intelligent, then he can count
from 1 to 10.

Gary can only count from 1 to 3.
Therefore, Gary is a good actor.

i: “Gary is intelligent.”
a: “"Gary is a good actor.”
¢c: "Gary can count from 1 to 10."



Arguments

i: "Gary is intelligent."
a: "Gary is a good actor.”
c: "Gary can count from 1 fo 10."

Stepl: —c Hypothesis

Step2: i— ¢ Hypothesis

Step 3¢ —i Modus tollens Steps 1 & 2

Step4: avi Hypothesis

Step b: a Disjunctive Syllogism
Steps 3 & 4

CUHC'USiOI"‘I: a (“Gﬂr'y IS a gUOd ﬂ.CTOI"‘,")
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Arguments

Yet another example:

If you listen to me, you will pass CS 320.

You passed CS 320.
Therefore, you have listened to me.

Is this argument valid?

5, it assumes ((p — q) A q) — p.

This statement is not a tautology. It is f
is false and q is frue.



Rules of Inference for Quantified Statements

Vx P(x) Universal

P(C) if ceU instantiation
P(c) for an arbitrary ceU Universal

- Vx P(x) generalization
3x P(x) Existential

». P(c) for some element cey  'Msfantiation

P(c) for some element ceU Existential
X P generalization
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Rules of Inference for Quantified Statements

Example:

Every UMB student is a genius.
George is a UMB student.
Therefore, George is a genius.

U(x): "x is a UMB student.”
G(x): "x is a genius."



Rules of Inference for Quantified Statements

The following steps are used in the argument:

Step 1: Vx (U(x) = 6(x)) Hypothesis

Step 2: U(George) — G(George) Univ. instantiation
using Step 1

Step 3: U(George) Hypothesis

Step 4: 6(George) Modus ponens

using Steps 2 & 3

vx P(x) Universal
P(C) If cel instantiation
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Proving Theorems

Direct proof:

An implication p — q can be proved by showing
that if p is true, then q is also true.

Example: Give a direct proof of the theorem
“If nis odd, then n? is odd.”

Idea: Assume that the hypothesis of this
implication is true (n is odd). Then use rules of
inference and known theorems of math to show
that q must also be true (n® is odd).



Proving Theorems

n is odd.
Then n = 2k + 1, where K is an integer.
Consequently, n® = (2k + 1)
= 4k? + 4k + 1
=12(2K= +i2K)

Since né can be written in this form, it is odd.



Proving Theorems

Indirect proof:

An implication p — q is equivalent to its contra-
Eositive —q — —p. Therefore, we can ﬁr‘ove p—>q

y showing that whenever q is false, then p is also
false.

Example: Give an indirect proof of the theorem
"If 3n+ 2 is odd, then n is odd."”

Idea: Assume that the conclusion of this
implication is false (n is even). Then use rules of
inference and known theorems to show that p
must also be false (3n + 2 is even).



Proving Theorems
nis even.

Then n = 2k, where K is an integer.

It follows that 3n + 2 = 3(2k) + 2
= 6Kk + 2
— 2(3k+ 1)

Therefore, 3n + 2 is even.
We have shown that the contrapositive of the

implication is true, so the implication itself is also
true (If 3n+ 2 is odd, then n is odd).



Proving Theorems
Indirect Proof is a special case of proof by
contradiction
Suppose n is even (hegation of the conclusion).
Then n = 2k, where Kk is an integer.

It follows that 3n + 2 = 3(2k) + 2
=6k + 2
= 2(3k + 1)

Therefore, 3n + 2 is even.

However, this is a contradiction since 3n + 2 is given
to be odd, so the conclusion (n is odd) holds.



Another Example on Proof

Anyone performs well is either intelligent or a
good actor.
If someone is intelligent, then he/she can count
from 1 to 10.
Gary performs well.
Gary can only count from 1 to 3.
Therefore, not everyone is both intelligent and a
good actor

P(x): x performs well

I(x): x is intelligent

A(X): x is a good actor

C(x): x can count from 1 to 10



Another Example on Proof

Hypufheses
Anyone performs well is either intelligent or a good
actor.
vx (P(x) = I(x) v A(x))

2. If someone is infelligent, then he/she can count
from 1 to 10.
vx (I(x) = C(x))

3. Gary performs well.

P(G)

4, Gary can only count from 1 to 3.
—C(G)

Conclusion: not everyone is both intelligent and a good
actor

S Xx(I(x) A A(X))
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Another Example on Proof

Direct proof:

Step 1: Wx (P(x) > I(x) v A(x)) Hypothesis

Step 2: P(G) — I(6) v A(G)
Step 3: P(6)

Step 4: I(6) v A(6)

Step b: vx (I(x) — C(x))
Step 6: I(G) - C(6)

Step 7: —C(6)

Step 9: —I(6G) v —A(G)
Step 10: —(I(G) A A(G))
Step 11: Ix—(I(x) A A(x))
Step 12: —¥x (I(x) A A(X))

Univ. Inst. Step 1
Hypothesis

Modus ponens Steps 2 & 3
Hypothesis

Univ. inst. Step5
Hypothesis

Modus tollens Steps 6 & 7
Addition Step 8
Equivalence Step 9
Exist. general. Step 10
Equivalence Step 11

Conclusion: —vx (I(x) » A(x)), not everyone is both

intelligent and a good actor.
Spring To03 CMSC 203 - EHsere
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Summary, Section 1.5

* Terminology (axiom, theorem, conjecture,
argument, etc.)

 Rules of inference (Tables 1 and 2)
+ Valid argument (hypotheses and conclusion)

» Construction of valid argument using rules of
inference

- For each rule used, write down and the
statements involved in the proof

* Direct and indirect proofs

- Other proof methods (e.g., induction, pigeon hole)
will be introduced in later chapters



