
MTH 201/211 TUTORIAL SOLUTIONS

Department of Mathematics

February 11, 2026

Detailed Step-by-Step Solutions

1. Reduction Formula for In

Given:

In =

∫
xnex dx, n > 0.

Integrate by parts: Let u = xn, dv = exdx. Then du = nxn−1dx, v = ex.

In = xnex −
∫

nxn−1ex dx = xnex − nIn−1.

Now compute I4 recursively:

I0 =

∫
exdx = ex.

I1 = xex − I0 = (x− 1)ex.

I2 = x2ex − 2I1 = (x2 − 2x+ 2)ex.

I3 = x3ex − 3I2 = (x3 − 3x2 + 6x− 6)ex.

I4 = x4ex − 4I3 =
(
x4 − 4x3 + 12x2 − 24x+ 24

)
ex + C.

Thus the formula is verified.

2. Implicit Differentiation

Given:
x2y2 − cos2 y = sin y.

Differentiate both sides w.r.t x:
d

dx
(x2y2)− d

dx
(cos2 y) =

d

dx
(sin y).

2xy2 + 2x2y
dy

dx
+ 2 cos y sin y

dy

dx
= cos y

dy

dx
.

Group dy
dx

terms:

2x2y
dy

dx
+ sin 2y

dy

dx
− cos y

dy

dx
= −2xy2.

Factor:
dy

dx

(
2x2y + sin 2y − cos y

)
= −2xy2.

Thus:
dy

dx
=

−2xy2

2x2y + sin 2y − cos y
.
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3. Rate of Change of Carbon Monoxide

Given:
c(p) =

√
0.5p3 + 17, p(t) = 3.1 + 0.1t2.

We need dc
dt

at t = 3.
dc

dt
=

dc

dp
· dp
dt

.

dc

dp
=

1

2
√
0.5p3 + 17

· 1.5p2 = 1.5p2

2
√
0.5p3 + 17

.

dp

dt
= 0.2t.

At t = 3:
p = 3.1 + 0.1(9) = 4.0.

dc

dp
=

1.5(16)

2
√
0.5(64) + 17

=
24

2
√
32 + 17

=
24

2
√
49

=
24

14
=

12

7
.

dp

dt
= 0.6.

Thus:
dc

dt
=

12

7
× 0.6 =

7.2

7
=

36

35
≈ 1.02857.

So the carbon monoxide level is increasing at approximately 1.03 ppm per year.

4. Rolle’s Theorem Verification

Given:
f(x) = (x− a)m(x− b)n, m, n ∈ Z+, x ∈ [a, b].

Since f(a) = 0 and f(b) = 0, and f is continuous on [a, b] and differentiable on (a, b),
Rolle’s theorem applies.

f ′(x) = m(x− a)m−1(x− b)n + n(x− a)m(x− b)n−1.

Factor:
f ′(x) = (x− a)m−1(x− b)n−1 [m(x− b) + n(x− a)] .

Set f ′(c) = 0:

m(c− b) + n(c− a) = 0 =⇒ c =
mb+ na

m+ n
.

Since a < c < b, Rolle’s theorem is verified.

5. Taylor Expansion about x = 2

Let P (x) = 2x3 + 7x2 + x− 6. Expand in powers of (x− 2). Let h = x− 2.

P (2) = 2(8) + 7(4) + 2− 6 = 16 + 28 + 2− 6 = 40.

P ′(x) = 6x2 + 14x+ 1, P ′(2) = 24 + 28 + 1 = 53.

P ′′(x) = 12x+ 14, P ′′(2) = 24 + 14 = 38.
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P ′′′(x) = 12, P ′′′(2) = 12.

Higher derivatives are zero. Thus:

P (x) = 40 + 53(x− 2) +
38

2!
(x− 2)2 +

12

3!
(x− 2)3.

P (x) = 40 + 53(x− 2) + 19(x− 2)2 + 2(x− 2)3.

6. Maclaurin Expansion of
√
x

No, f(x) =
√
x cannot be expanded in ascending powers of x by Maclaurin’s theorem

because f ′(x) = 1
2
√
x
is not defined at x = 0. Maclaurin’s theorem requires differentiability

at x = 0.

7. Homogeneous Function and Euler’s Theorem

(i) A function f(x, y) is homogeneous of degree n if:

f(tx, ty) = tnf(x, y) ∀t > 0.

(ii) Euler’s theorem: If f is homogeneous of degree n, then:

x
∂f

∂x
+ y

∂f

∂y
= nf.

(iii) Given f(x, y) = x3 + 4xy2 − 3y3:

f(tx, ty) = t3x3 + 4t3xy2 − 3t3y3 = t3f(x, y).

Thus degree n = 3.
∂f

∂x
= 3x2 + 4y2,

∂f

∂y
= 8xy − 9y2.

xfx+yfy = x(3x2+4y2)+y(8xy−9y2) = 3x3+4xy2+8xy2−9y3 = 3x3+12xy2−9y3 = 3f(x, y).

Thus Euler’s theorem is verified.

8. Chain Rule Proof

Given u = f(x, y), x = s2 − t2, y = 2st.

∂u

∂s
=

∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

= fx(2s) + fy(2t).

∂u

∂t
= fx ·

∂x

∂t
+ fy ·

∂y

∂t
= fx(−2t) + fy(2s).

Now compute:

s
∂u

∂s
− t

∂u

∂t
= s(2sfx + 2tfy)− t(−2tfx + 2sfy).

= (2s2fx + 2stfy) + (2t2fx − 2stfy) = 2(s2 + t2)fx.

Thus:

s
∂u

∂s
− t

∂u

∂t
= 2(s2 + t2)

∂f

∂x
.
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9. Partial Differential Identity

Given u =
√
1− 2xy + y2.

∂u

∂x
=

1

2
√
1− 2xy + y2

· (−2y) = −y

u
.

∂u

∂y
=

1

2
√
1− 2xy + y2

· (−2x+ 2y) =
y − x

u
.

Now:

x
∂u

∂x
− y

∂u

∂y
= x

(
−y

u

)
− y

(
y − x

u

)
= −xy

u
− y2 − xy

u
= −y2

u
.

Thus:

u−1

(
x
∂u

∂x
− y

∂u

∂y

)
= −y2

u2
.

The statement = y2 = 0 appears to be a typo; the correct expression is − y2

u2 .

10. Derivative with Parametric Forms

Given u = x3 + y3, x = a cos t, y = b sin t.

du

dt
=

∂u

∂x
· dx
dt

+
∂u

∂y
· dy
dt

.

∂u

∂x
= 3x2,

∂u

∂y
= 3y2.

dx

dt
= −a sin t,

dy

dt
= b cos t.

Thus:

du

dt
= 3(a cos t)2(−a sin t) + 3(b sin t)2(b cos t) = −3a3 cos2 t sin t+ 3b3 sin2 t cos t.

11. Polar Coordinates Gradient

Given w = f(x, y), x = r cos θ, y = r sin θ.

∂w

∂r
= fx cos θ + fy sin θ.

∂w

∂θ
= −fxr sin θ + fyr cos θ.

Then: (
∂w

∂r

)2

+
1

r2

(
∂w

∂θ

)2

= (fx cos θ + fy sin θ)
2 +

1

r2
(−fxr sin θ + fyr cos θ)

2.

= f 2
x cos

2 θ + 2fxfy cos θ sin θ + f 2
y sin

2 θ + f 2
x sin

2 θ − 2fxfy sin θ cos θ + f 2
y cos

2 θ.

= f 2
x(cos

2 θ + sin2 θ) + f 2
y (sin

2 θ + cos2 θ) = f 2
x + f 2

y .
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12. Laplace’s Equation in New Variables

Given u = ex cos y, v = ex sin y. First, compute ux, uy, vx, vy:

ux = ex cos y = u, uy = −ex sin y = −v.

vx = ex sin y = v, vy = ex cos y = u.

Now f is a function of u, v:

fx = fuux + fvvx = fuu+ fvv.

fy = fuuy + fvvy = fu(−v) + fvu = −fuv + fvu.

Second derivatives:

fxx =
∂

∂x
(fuu+ fvv) = (fuuux + fuvvx)u+ fuux + (fvuux + fvvvx)v + fvvx.

= (fuuu+ fuvv)u+ fuu+ (fvuu+ fvvv)v + fvv.

Since ux = u, vx = v and u2 + v2 = e2x. Similarly, fyy:

fy = −fuv + fvu.

fyy =
∂

∂y
(−fuv + fvu) = −(fuuuy + fuvvy)v − fuvy + (fvuuy + fvvvy)u+ fvuy.

= −(fuu(−v) + fuvu)v − fuu+ (fvu(−v) + fvvu)u+ fv(−v).

= (fuuv − fuvu)v − fuu+ (−fvuv + fvvu)u− fvv.

= fuuv
2 − fuvuv − fuu− fvuuv + fvvu

2 − fvv.

Add fxx + fyy: The cross terms cancel, and we get:

fxx + fyy = (u2 + v2)(fuu + fvv).

Thus:

(u2 + v2)−1

(
∂2f

∂x2
+

∂2f

∂y2

)
= fuu + fvv.

The given statement = 0 implies fuu + fvv = 0, i.e., f is harmonic in u, v.

13. Derivative of FA(x)

Given:
FA(x) = Aex cosx+Bex sinx.

F ′
A(x) = A(ex cosx− ex sinx) +B(ex sinx+ ex cosx).

= ex[(A+B) cosx+ (B − A) sinx].

This is of the form FA+B,B−A(x). The given FA+1,A−4(x) is a misprint unless specific A,B
are chosen.
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14. Derivative and Integration

Let y = eax cos bx.

dy

dx
= aeax cos bx− beax sin bx = eax(a cos bx− b sin bx).

Let z = eax sin bx.

dz

dx
= aeax sin bx+ beax cos bx = eax(a sin bx+ b cos bx).

Now let:

Ic =

∫
eax cos bx dx, Is =

∫
eax sin bx dx.

From the derivatives:

d

dx
(eax cos bx) = aeax cos bx− beax sin bx.

Integrate both sides:
eax cos bx = aIc − bIs. (1)

Similarly:
eax sin bx = aIs + bIc. (2)

Solve (1) and (2) for Ic, Is: Multiply (1) by a, (2) by b and add:

aeax cos bx+ beax sin bx = (a2 + b2)Ic.

Thus:

Ic =
eax(a cos bx+ b sin bx)

a2 + b2
+ C.

Similarly:

Is =
eax(a sin bx− b cos bx)

a2 + b2
+ C.

15. Optimization

Given:
T (x) = 100− 30x+ 3x2.

T ′(x) = −30 + 6x = 0 =⇒ x = 5.

T ′′(x) = 6 > 0 =⇒ minimum at x = 5.

Thus assign 5 programmers.

16. Mean Value Theorem Application

Given f differentiable, f(3) = 2, and 3 ≤ f ′(x) ≤ 4 for all x. By MVT, ∃c ∈ (3, 5) such
that:

f ′(c) =
f(5)− f(3)

5− 3
=

f(5)− 2

2
.

Thus:
f(5) = 2f ′(c) + 2.

Since 3 ≤ f ′(c) ≤ 4:
6 ≤ 2f ′(c) ≤ 8 =⇒ 8 ≤ f(5) ≤ 10.
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17. Maclaurin Series and Radius

Given:

f(x) =
1√
4− x

=
1

2

(
1− x

4

)−1/2

.

Binomial series:

(1− z)−1/2 =
∞∑
n=0

(
−1/2

n

)
(−z)n =

∞∑
n=0

(2n)!

(n!)24n
zn, |z| < 1.

Here z = x/4:

f(x) =
1

2

∞∑
n=0

(2n)!

(n!)24n

(x
4

)n

=
1

2

∞∑
n=0

(2n)!

(n!)216n
xn.

Radius of convergence: |x/4| < 1 =⇒ |x| < 4.

18. Lagrange Multipliers

Maximize f(x, y) = x2y2 subject to g(x, y) = x+ y = 8.

∇f = λ∇g =⇒ (2xy2, 2x2y) = λ(1, 1).

Thus:
2xy2 = λ, 2x2y = λ.

Equate: 2xy2 = 2x2y =⇒ xy(y−x) = 0. Case 1: x = 0 or y = 0 gives f = 0 (minimum).
Case 2: x = y, then x + y = 8 =⇒ x = y = 4. Then f = 42 · 42 = 16 · 16 = 256. Thus
maximum is 256 at (4, 4).

19. Homogeneous Decomposition

Given u = f + ϕ, f homogeneous degree p, ϕ homogeneous degree q, p ̸= q. By Euler:

xux + yuy = pf + qϕ. (1)

Second derivatives: The Euler operator applied twice gives:

x2uxx + 2xyuxy + y2uyy = p(p− 1)f + q(q − 1)ϕ. (2)

From (1): ϕ = xux+yuy−pf

q
. Substitute into (2) and solve for f :

x2uxx + 2xyuxy + y2uyy = p(p− 1)f + q(q − 1)
xux + yuy − pf

q
.

Multiply through by q:

q(x2uxx + 2xyuxy + y2uyy) = qp(p− 1)f + q(q − 1)(xux + yuy)− q(q − 1)pf.

= pf [q(p− 1)− q(q − 1)] + q(q − 1)(xux + yuy).

= pfq(p− q) + q(q − 1)(xux + yuy).

Thus:

f =
1

p(p− q)

[
x2uxx + 2xyuxy + y2uyy

]
− q − 1

p(p− q)
[xux + yuy] .
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20. Homogeneous Function Derivative

Given z homogeneous of degree n. Euler’s theorem: xzx + yzy = nz. The statement
∂z
∂x

+ ∂z
∂y

= nz is false in general. It holds only if zx + zy = xzx + yzy, which is not true.
Likely a misprint.

21. Approximation

Let F (x, y) =
√
x2 + 2y0.7. At (3, 2):

F (3, 2) =
√
9 + 2(20.7).

20.7 = e0.7 ln 2 ≈ e0.485 ≈ 1.623. Thus F (3, 2) ≈
√
9 + 3.246 =

√
12.246 ≈ 3.4994. Partial

derivatives:

Fx =
x√

x2 + 2y0.7
, Fx(3, 2) ≈

3

3.4994
≈ 0.857.

Fy =
0.7y−0.3√
x2 + 2y0.7

.

y−0.3 = 2−0.3 = e−0.3 ln 2 ≈ e−0.2079 ≈ 0.812. Thus Fy(3, 2) ≈ 0.7×0.812
3.4994

≈ 0.5684
3.4994

≈ 0.1624.
Now at (3.02, 2.1):

F ≈ 3.4994 + 0.02(0.857) + 0.1(0.1624) = 3.4994 + 0.01714 + 0.01624 = 3.53278.

22. Minimum on Plane

Minimize f = x2 + y2 + z2 subject to ax + by + cz = p. Lagrange: 2x = λa, 2y = λb,
2z = λc. Thus x = λa

2
, y = λb

2
, z = λc

2
. Substitute into constraint:

a

(
λa

2

)
+ b

(
λb

2

)
+ c

(
λc

2

)
= p.

λ

2
(a2 + b2 + c2) = p =⇒ λ =

2p

a2 + b2 + c2
.

Thus:

x =
pa

a2 + b2 + c2
, y =

pb

a2 + b2 + c2
, z =

pc

a2 + b2 + c2
.

Then:

fmin = x2 + y2 + z2 =
p2(a2 + b2 + c2)

(a2 + b2 + c2)2
=

p2

a2 + b2 + c2
.

23. Change of Variables

Given:
x+ y = ln(u+ v), x− y = ln(u− v).

Solve for x, y:

x =
1

2
[ln(u+ v) + ln(u− v)] =

1

2
ln(u2 − v2).

y =
1

2
[ln(u+ v)− ln(u− v)] =

1

2
ln

(
u+ v

u− v

)
.
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Now compute first partial derivatives:

∂x

∂u
=

u

u2 − v2
,

∂x

∂v
= − v

u2 − v2
.

∂y

∂u
= − v

u2 − v2
,

∂y

∂v
=

u

u2 − v2
.

Now for any function f(x, y):

∂f

∂u
= fx

∂x

∂u
+ fy

∂y

∂u
= fx

u

u2 − v2
+ fy

(
− v

u2 − v2

)
.

∂f

∂v
= fx

∂x

∂v
+ fy

∂y

∂v
= fx

(
− v

u2 − v2

)
+ fy

u

u2 − v2
.

Now compute second derivatives and simplify to prove:

∂2f

∂x2
− ∂2f

∂y2
= (u2 − v2)

(
∂2f

∂u2
− ∂2f

∂v2

)
.

This is a standard transformation of the wave operator.

24. Area Between Curves

Given:
y1 = (x− 1)2, y2 = 4− (x− 3)2.

Find intersection:
(x− 1)2 = 4− (x− 3)2.

x2 − 2x+ 1 = 4− (x2 − 6x+ 9) = −x2 + 6x− 5.

2x2 − 8x+ 6 = 0 =⇒ x2 − 4x+ 3 = 0 =⇒ (x− 1)(x− 3) = 0.

Thus x = 1, 3. Area:

A =

∫ 3

1

[y2 − y1]dx =

∫ 3

1

[4− (x− 3)2 − (x− 1)2]dx.

=

∫ 3

1

[4− (x2 − 6x+ 9)− (x2 − 2x+ 1)]dx.

=

∫ 3

1

[4− x2 + 6x− 9− x2 + 2x− 1]dx.

=

∫ 3

1

[−2x2 + 8x− 6]dx.

=

[
−2x3

3
+ 4x2 − 6x

]3
1

.

At x = 3: −54
3
+ 36 − 18 = −18 + 36 − 18 = 0. At x = 1: − 2

3
+ 4 − 6 = −2

3
− 2 = −8

3
.

Thus:

A = 0−
(
−8

3

)
=

8

3
.
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25. Line Integral

Given:

I =

∫ (1,4)

(0,0)

(x2 + 2y)dx+ xy dy, y = 4x2.

Then dy = 8xdx. Substitute:

I =

∫ 1

0

[x2 + 2(4x2)]dx+ [x(4x2)](8xdx).

=

∫ 1

0

(x2 + 8x2)dx+

∫ 1

0

32x4dx.

=

∫ 1

0

9x2dx+

∫ 1

0

32x4dx.

=
[
3x3

]1
0
+

[
32

5
x5

]1
0

= 3 +
32

5
=

15

5
+

32

5
=

47

5
.

26. Line Integral on Semi-circle

Given:

I =

∫ B

A

(x+ y)dx, A(0, 1), B(0,−1), x2 + y2 = 1, x ≥ 0.

Parametrization: x = cos θ, y = sin θ, θ : π/2 → −π/2. dx = − sin θdθ.

I =

∫ −π/2

π/2

(cos θ + sin θ)(− sin θ)dθ =

∫ π/2

−π/2

(cos θ sin θ + sin2 θ)dθ.

=

∫ π/2

−π/2

sin 2θ

2
dθ +

∫ π/2

−π/2

1− cos 2θ

2
dθ.

First integral:
∫
sin 2θdθ = − cos 2θ

2
, odd function over symmetric interval =⇒ 0. Second:

1
2

∫ π/2

−π/2
dθ − 1

2

∫ π/2

−π/2
cos 2θdθ = 1

2
(π)− 0 = π

2
. Thus I = π

2
.

27. Line Integral over Triangle

Given:

I =

∮
C

(x2dx− 2xydy),

C: triangle O(0, 0), A(1, 0), B(0, 1). Segment OA: y = 0, dy = 0, x : 0 → 1:∫ 1

0

x2dx =
1

3
.

Segment AB: x+ y = 1, y = 1− x, dy = −dx, x : 1 → 0:∫ 0

1

[x2dx−2x(1−x)(−dx)] =

∫ 0

1

[x2dx+2x(1−x)dx] =

∫ 0

1

(x2+2x−2x2)dx =

∫ 0

1

(2x−x2)dx.

=

[
x2 − x3

3

]0
1

= (0)−
(
1− 1

3

)
= −2

3
.
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Segment BO: x = 0, dx = 0, y : 1 → 0:∫ 0

1

0dy = 0.

Sum: I = 1
3
− 2

3
+ 0 = −1

3
.

28. Volume of Solid

Region: quarter circle x2 + y2 ≤ 4, x ≥ 0, y ≥ 0, z = 6− xy, z ≥ 0. Volume:

V =

∫∫
R

(6− xy)dA =

∫ 2

0

∫ √
4−x2

0

(6− xy)dydx.

Inner integral: ∫ √
4−x2

0

6dy = 6
√
4− x2.

∫ √
4−x2

0

xydy = x · y
2

2

∣∣∣√4−x2

0
=

x(4− x2)

2
.

Thus inner = 6
√
4− x2 − x(4−x2)

2
. Outer integral:

V =

∫ 2

0

6
√
4− x2dx− 1

2

∫ 2

0

(4x− x3)dx.

First integral:
∫ 2

0

√
4− x2dx = area of quarter circle radius 2 = 1

4
π(22) = π. Thus 6×π =

6π. Second:
∫ 2

0
4xdx = [2x2]20 = 8,

∫ 2

0
x3dx = [x4/4]20 = 4. So

∫ 2

0
(4x− x3)dx = 8− 4 = 4.

Thus 1
2
× 4 = 2. Hence:

V = 6π − 2.
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