MTH 201/211 TUTORIAL SOLUTIONS

Department of Mathematics

February 11, 2026

Detailed Step-by-Step Solutions

1. Reduction Formula for I,
Given:
I, = /w”emd:ﬁ, n > 0.

Integrate by parts: Let v = 2", dv = e*dz. Then du = na" ‘dx, v = €7.

I, =x"e® — /nx"lex dx = z"e” —nl,_.

Iy = /ezdaj =e".

I =xe® — I = (x — 1)e”.
I = 2% — 21 = (27 — 2z + 2)€".
Iy = 2?e¢” — 31, = (2° — 32° + 67 — 6)e”.
Iy = z'e” — ALy = (2 — 42® + 122° — 242 4 24) € + C.

Thus the formula is verified.

Now compute I, recursively:

2. Implicit Differentiation

Given:
z?y? — cos’y = siny.
Differentiate both sides w.r.t z:

d d d
—(2%y?) — —(cos’y) = S (siny).

dx dx
dy dy

d
22y% + 2x2y—y + 2cosysiny— = cosy——.
dx dx dx

Group Z—g terms:

d d d
2x2y£ + sin 2yd—i — cos yd—i = —229°%
Factor: p
d_y (2x2y + sin 2y — cos y) = —229°%
x
Thus:

dy —2zy?

dr 222y + sin 2y — cosy
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3. Rate of Change of Carbon Monoxide

c(p) = V0.5p3 + 17, p(t) = 3.1+ 0.1¢2

Given:

We need % at t = 3.

de _de dp
dt dp dt’
de B 1 Lop? — 1.5p?
dp  2,/0.5p3 + 17 P 2/0.5p3 + 17
dp
— = 0.2t
a0
At t = 3:
p=31+0.1(9) = 4.0.
de 1.5(16) 2424 24 12
dp  2,/05(64) +17 2V/32+17 249 14 7
dp
— =0.6.
dt
Hhus de 12 72 36
C .
- == 6 =—=—~1.02857.
= X 06= = 02857

So the carbon monoxide level is increasing at approximately 1.03 ppm per year.

4. Rolle’s Theorem Verification

Given:
flx)=(x—a)™(x—b)", m,ne€Z", x¢clabl.

Since f(a) = 0 and f(b) = 0, and f is continuous on [a,b] and differentiable on (a,b),
Rolle’s theorem applies.

f(@) = mla — )" @ = b)" + n(z — )" (z = )"

Factor:
fi@) = (z—a)" z = b)"" [m(z —b) + n(z —a)].
Set f'(c) = 0: )
mo + na
m(c—b)+n(c—a)=0 = c= T

Since a < ¢ < b, Rolle’s theorem is verified.

5. Taylor Expansion about z = 2
Let P(z) = 223 4+ 72* + 2 — 6. Expand in powers of (z — 2). Let h = x — 2.
P(2) = 2(8) + 7(4) +2— 6 = 16 + 28 + 2 — 6 = 40.
Plz) =622+ 14w + 1, P/(2)=24+28+1=53.
P'(z) =120+ 14, P"(2) =24+ 14 = 38.
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P"(z) =12, P"(2)=12.

Higher derivatives are zero. Thus:
P(z) =404 53(x — 2) + —

P(x) =40 + 53(z — 2) + 19(z — 2)* + 2(x — 2).

6. Maclaurin Expansion of /x

No, f(z) = V& cannot be expanded in ascending powers of x by Maclaurin’s theorem
because f'(x) = f is not defined at x = 0. Maclaurin’s theorem requires differentiability
at x = 0.

7. Homogeneous Function and Euler’s Theorem

(i) A function f(x,y) is homogeneous of degree n if:

[tz ty) = t"f(z,y) VL>0.
(ii) Euler’s theorem: If f is homogeneous of degree n, then:

af  of
Tor +y8y

nf.
(iii) Given f(x,y) = 2 + 4xy* — 3y>:
fto, ty) = 327 + 4229 — 3t%y° =t f (2, y).

Thus degree n = 3.
of
ox

z fotyf, = 2(32°+4y°) +y(8zy—9y?) = 32 +dxy* +8xy*—9y* = 32°+122y*—9y° = 3f(z, 7).

0
= 3% + 49%, 8—5:8xy—9y2.

Thus Euler’s theorem is verified.

8. Chain Rule Proof
Given u = f(z,y), * = s* — 2, y = 2st.

ou 8f or Of 8y

95 or $+8_y Ds = f(25) + f,(2t).

ou ox oy
5 Jo En + fy- o fo(=2t) + fy(2s).
Now compute:
ou  Ou
555 ta = s5(2sf, +2tf,) —t(=2tf, + 2sf,).

= (28 f, + 2stf,) + (282 f, — 2stf,) = 2(s*> + %) fa.
Thus:



9. Partial Differential Identity

Given u = /1 — 2zy + y2.

ou 1 Yy
gu _ (=2y) = -2
or  2\/1 — 2zxy + y2 u
1 _
%: -(—2m—|—2y):y—
oy 23/1—2zy+ 12
Now
Ox y@y B u Y\ u o u v ou
Thus:
ox oy u?’

The statement = y? = 0 appears to be a typo; the correct expression is —z—z.

10. Derivative with Parametric Forms
Given u = 23 + 4, x = acost, y = bsint.

du _Qu dv du dy
dt Oz dt Oy dt’

ou ou
ox o dy Y
d d
d_f:—asint, d—i:bCOSt.
Thus:
d
E% = 3(acost)*(—asint) + 3(bsint)?(bcost) = —3a® cos® tsint + 3b° sint cos t.

11. Polar Coordinates Gradient

Given w = f(x,y), x = rcosf, y = rsinb.

ow .

5 = fzcosO + f,sin6.
ow :
0= —farsin® + fyrcosf.

Then:
_éw 2+i _&U 2_(f 0+ f 'n9)2+l(_f inf + f g)2
or 2 90 z COS y Sl 2 2T S1I yT" COS .

= f§c0529—1—2fxfycosﬁsin9+f;sin29+f§sin29 — QfxfySiDQCOSQ-i—fyzCOSQ 6.
= f?(cos® 0 + sin” 0) + f;(sin2 0+ cos®f) = f2 + fy2



12. Laplace’s Equation in New Variables
Given u = e” cosy, v = e”siny. First, compute u, uy, vz, vy:
T T -
uy =ecosy =u, u, =—e'siny = —v.
v, =€e'siny =v, v, =e"cosy = u.
Now f is a function of u, v:
fw = fuum + fvvx = fuu + fvv-

fy = fuuy + fvvy = fu<_v) + fvu = _fuv + fvu~

Second derivatives:
0
Joz = %(fuu + fov) = (fuutte + fuoVe)t + futle + (foulle + fooz)V + foUs.

- (fuuu + fuvv)u + fuu + (fvuu _'_ fvvv)v + fvv-

Since u, = u,v, = v and u? + v? = €**. Similarly, f,,:

fy = —fuv + fou.

fyy = agy(_fuv + fvu) = _(fuuuy + fuvvy)v - fuvy + (fvuuy + fvvvy)u + fvuy-

= —(fuu(=2) + fur)v = fuu + (fou(=0) + fow)u + fo(-v).
= (fuu? — fuo)v — fut + (= fou¥ + foou)u — fyo.
= fuu® = futtv = furt = fouuv + fru® = fyv.
Add f.; + fyy: The cross terms cancel, and we get:

foo + foy = @ +0%) (fuu + foo)-

Thus: an 82]”
2 n-1 (9 9T _
@+ (G5 4+ 58) =t o

The given statement = 0 implies f,, + fo, = 0, i.e., f is harmonic in u, v.

13. Derivative of F4(x)
Given:
Fa(x) = Ae® cosx + Be"sinz.
Fly(z) = A(e® cosx — €®sinx) + B(e® sinz + €* cos x).
=e’[(A+ B)cosx + (B — A)sinz].

This is of the form Faipp_a(z). The given Fi1 a—4(x) is a misprint unless specific A, B
are chosen.



14. Derivative and Integration

Let y = e* cos bx.

d
d_y = ae® cos bx — be®” sinbx = €**(a cos bxr — bsin bx).
x
Let z = e** sin bx.
dz ar .: axr axr 3
oy = e sin bz + be® cos br = €**(asin bx + bcos bx).
x

Now let:
Ic:/e‘”” cosbrdx, I :/e‘” sin bx dz.

From the derivatives:

. (e** cos bxr) = ae® cos bxr — be® sin bx.
x

Integrate both sides:
e cosbr = al, — bl,. (1)

Similarly:
e sinbr = aly + bl.. (2)

Solve (1) and (2) for I., I,: Multiply (1) by a, (2) by b and add:

ae®™ cos bx + be™ sin bx = (a® + b*)1,.

Thus: - A I
I e (a cos br + bsin bx) e
a? + b?
Similarly:
I e (asinbxr — bcos bx) )

a? + b2

15. Optimization
Given:
T(x) = 100 — 302 + 32°.
T'(x)=-304+6x=0 = z=5.
T"(x) =6 >0 = minimum at = = 5.

Thus assign 5 programmers.

16. Mean Value Theorem Application
Given f differentiable, f(3) =2, and 3 < f'(x) < 4 for all z. By MVT, Jc € (3,5) such

that F5)— £(3)  f(5) 2
Mo="F—5"="5"

Thus:

Since 3 < f'(c) < 4:



17. Maclaurin Series and Radius

Given:

Binomial series:

Here z = z/4:

=33 A ()=

Radius of convergence: |z/4] <1 = |z| < 4.

18. Lagrange Multipliers
Maximize f(z,y) = x?y? subject to g(z,y) =z +y = 8.
Vf=AVg = (2237 22%) = A\(1,1).

Thus:
20y% = N\, 227y = \.

Equate: 2ry? = 22%y = xy(y—x) =0. Case 1: x = 0 or y = 0 gives f = 0 (minimum).
Case 2: x =y, thenx +y=8 = x =y =4. Then f =4?-4> =16 - 16 = 256. Thus
maximum is 256 at (4,4).

19. Homogeneous Decomposition
Given u = f + ¢, f homogeneous degree p, ¢ homogeneous degree ¢, p # q. By Euler:
zuy +yuy =pf +q¢. (1)
Second derivatives: The Euler operator applied twice gives:
T2y + 20Ythy + Yy, = p(p — 1) f +qlg — )¢ (2)
From (1): ¢ = w. Substitute into (2) and solve for f:

)xux+yuy—pf
q

TP Uy + 20y Uy + Yoy = plp — 1) f +qlg — 1
Multiply through by ¢:
q(#7 Uy + 20ytgy + yuy,) = qp(p — 1) f + q(q — 1) (wu, + yuy) — (g — 1)pf.

=pflalp — 1) —qlg — V)] + q(qg — 1) (zu, + yuy).
=pfalp — q) + q(q — 1)(zus + yuy).

Thus:
qg—1

p(p—q)

f= [aj2um + 20YUyy + y2uyy] — [zu, + yuy) .



20. Homogeneous Function Derivative

Given z homogeneous of degree n. Euler’s theorem: zz, + yz, = nz. The statement
% + g—z = nz is false in general. It holds only if 2, + 2, = 22, + yz,, which is not true.
Likely a misprint.

21. Approximation

Let F(z,y) = /a2 4+ 2y°7. At (

F(3,2) = /9 + 2(27).

207 — (072 (0485 1 623 Thus F(3,2) ~ /0 + 3.246 = /12.246 ~ 3.4994. Partial

derivatives:
T

F,=——0~ - F.(32)~ ~ 0.857.
N (3:2)~ 31003
0'7y70.3
F, =

/2 + 2y0.7'

-03 _ 9-03 _ ,—03In2 ~ ,—0.2079 ~_ ~ 0.7x0.812 . 0.5684
Yy 03 — 2 =€ ~ € ~ 0.812. Thus Fy(3,2) ~ 32994 ~ 32994 ~ (0.1624.
Now at (3.02,2.1):

F ~ 3.4994 + 0.02(0.857) + 0.1(0.1624) = 3.4994 + 0.01714 + 0.01624 = 3.53278.

22. Minimum on Plane

Minimize f = 22 + y + 22 subject to az + by + cz = p. Lagrange: 2z = \a, 2y = b,
2z = Ac. Thus x = 2 , Y = ’\2b, z = %‘ Substitute into constraint:

(5o (2) ()

A 2
§(a2—|—b2—|—02) =p = A= WZZ)—FCZ'
Thus:
pa pb pec
“arpi® VT adrRid S aipia
Then:

Jimi :x2+y2+z2:p2(a2+b2+62): v
o (@2 + b2+ 32)? @+ +&

23. Change of Variables

Given:
r+y=In(utv), z-—y=In(u—uwv).
Solve for z, y:

[In(u +v) +In(u — v)] = = In(u? — v?).

l\’)l»—t

T =

In(u+v) — In(u —v)] =

1
2
1
v= 2

l\:JI}—l



Now compute first partial derivatives:

dr w ox v
ou  u2—v2 ov  u—0?
dy v dy  wu
ou  ur—v? v u?—o?
Now for any function f(z,y):
af ox Jy u v
ou fx% +fy% B fmu2 — 02 L (_u2 — 112> '
of ox dy v u
a0 =0 T gy =1 (‘F) tha
Now compute second derivatives and simplify to prove:
*f *f o o (Of  Pf
— ——=W-v)|==-=).
ox?  0y? ou?  Ov?
This is a standard transformation of the wave operator.
24. Area Between Curves
Given:
o= (r—1)?% yp=4-(r-3)7>
Find intersection:
(x—1)?=4— (v —3)%
7 — 20 +1=4— (2> —62+9) = —2®+ 62 — 5.

207 — 81 +6=0 = 2° —42+3=0 = (v —1)(x —3)=0.

Thus x =1, 3. Area:

A /13[y2 _ yilda = /13[4 (2= 3 — (z — 1)da.

/3[4 — (2% — 62 +9) — (2* — 22+ 1)]dz.

3
/ [4— 2 + 62 — 9 — 2° + 27 — 1]dx.
1

3
/ [—22% + 87 — 6]dx.
1

2% ’
= {—i + 42° —6x] .
3 1

Atz =3 -3 +36-18=—-18+36—-18=0. Atz =1: —24+4—-6=—
Thus: . .
A=0— (-5 )=+
(5)-3
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25. Line Integral

Given:

/ (2% 4 2y)dz + vy dy, vy = 42>

Then dy = 8xdz. Substitute:

_ /0 [@? + 2(42%)]dz + [2(42%)] (8zdx).

1 1
= / (2% + 82%)dx + / 32z dx.
0 0

1 1
:/ 9x2dx—l—/ 3224dx.
0 0

32 1° 32 15 32 47
0

26. Line Integral on Semi-circle

Given: 5
I= / (x +y)dw, A0,1),B(0,—1),2* +9* =1,z > 0.
A
Parametrization: x = cosf,y =sinf, 0 : 7/2 — —7/2. dr = — sin 6d6.
—7/2 /2
I= / (cos + sin @) (—sin0)do = / (cos Bsin @ + sin® 0)d6.
w/2 —m/2
/2 sin 20 ™21 — cos 20
= / do + / —dh.
—7/2 2 —7/2 2
First integral: [ sin260df = COZQG, odd function over symmetric interval = 0. Second:
LTy do =4 [T, cos20d0 = L(m) — 0 =%. Thus [ =%

27. Line Integral over Triangle

Given:

I= ]{(xde — 2xydy),
c

C": triangle 0(0,0), A(1,0), B(0,1). Segment OA: y =0,dy =0,z : 0 — 1:

1
1

/ 22dr = =.
0 3

Segment AB: z4+y=1y=1—2,dy=—dz,x:1—0:

/10[x2d$—2$(1—x)(—d$)]:/lo[xde+2:n(1—$)d$] :/10(x2+2x—2x2)da;=/10(2x—x2)dx.



Segment BO: x =0,de =0,y : 1 — 0:

0
/ Ody = 0.
1

Sum: I =2z —24+0=—=.

wiN
W=

1
3

28. Volume of Solid

Region: quarter circle 22 + 4% <4, 2 >0,y >0, 2 = 6 — 2y, z > 0. Volume:

V= //R(6 — y)dA = /02 /Omw ~ wy)dyda.

Va—z2
/ 6dy = 6vV4 — 22
0

/ - Y VAR a4 —a?)
J:ydy:x-—‘ = —.
0 2 1o

Inner integral:

2
Thus inner = 6v/4 — 22 — 242 Oyger integral:

2
2 1 2 ‘
V:/ 6\/4—:132dx—§/ (4o — 2°)dw.
0 0

First integral: f02 V4 — 22dx = area of quarter circle radius 2 = {7(2%) = 7. Thus 6x 7 =
6. Second: f02 4rdr = 2222 =8, f02 23dr = [x*/4)2 = 4. So f02(4x —23)dr =8 —4=4.
Thus % x 4 = 2. Hence:

V =6m—2.
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