

Staining Techniques for Differentiation of Microorganisms

Prepared by : Dr O.H. AJIGBEWU

Department of Microbiology

Introduction

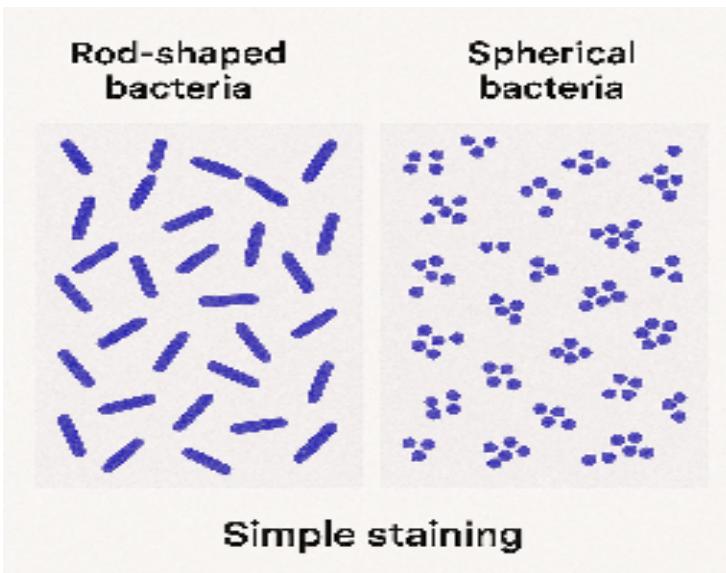
- Imagine trying to identify people in a crowded room where everyone is wearing the same colour of clothing.
- That's exactly what happens when microbiologists look at microorganisms under the microscope
 - without staining—they all look nearly transparent and similar.
- Staining is like giving each microorganism a “unique outfit”
- It helps us see their shapes, structures, and even differences in their cell walls.
-

What is Staining

- Staining is a laboratory technique that applies chemical dyes (stains) to microbial cells, tissues, or cellular components so they take up color and become more visible or distinguishable under light microscopy.
- Stains are usually organic dyes that interact with cellular components by ionic or affinity-based binding
- The result is increased contrast between the specimen and the background or between different structures within the specimen.

Purposes of staining

- 1) **Visualization:** makes tiny, often transparent microbes visible under a light microscope.
- 2) **Differentiation:** separates organisms into groups (for example, Gram-positive vs Gram-negative) based on how they retain or lose particular dyes.
- 3) **Structural identification:** highlights specific structures such as capsules, spores, flagella, or cell walls so their presence, size, and shape can be studied.


These purposes guide which staining method is chosen for a given diagnostic or research question.

Why Staining Matters in Microbiology

- 1) Helps identify pathogens in clinical samples.
- 2) Guides doctors in choosing treatments.
- 3) Reveals microbial structures important for survival and virulence.
- 4) Aids in teaching and research by making invisible organisms visible.

Types of Staining

- 1) Simple Staining
- 2) Differential Staining
- 3) Negative Staining
- 4) Special Staining

1. Simple Staining

Simple staining uses a single dye to colour microorganisms.

Purpose: It highlights the overall shape, size, and arrangement of cells.

Common dyes: Methylene blue, crystal violet, safranin

Procedure:

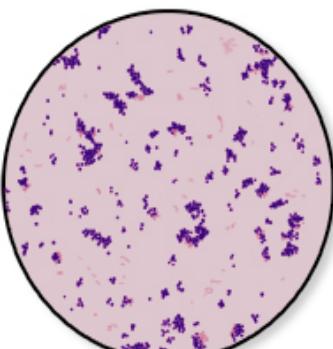
1. Prepare a smear of the microorganism on a slide.
2. Fix the smear by passing it over a flame.
3. Flood the slide with dye for 30–60 seconds.
4. Rinse gently with water and observe under the

Differential Staining

- Differential staining uses more than one dye to distinguish between different types of microorganisms or structures.
- It provides **diagnostic and taxonomic value.**
- It aids in the identification of pathogens and understanding of microbial physiology

- **Examples**
 - Gram Staining
 - Acid-Fast Staining
 - Endospore Staining
 - Capsule Staining
 - Flagella Staining

Gram Staining


1) Gram Staining

- Invented by: Hans Christian Gram in 1884.
- Purpose: Differentiates bacteria into

- Gram-positive
- Gram-negative

Gram-negative

Gram-positive

• Procedure:

- 1) Apply crystal violet (primary stain).
- 2) Add iodine (mordant) to fix the dye.
- 3) Wash with alcohol (decolourizer).
- 4) Counterstain with safranin.

Result

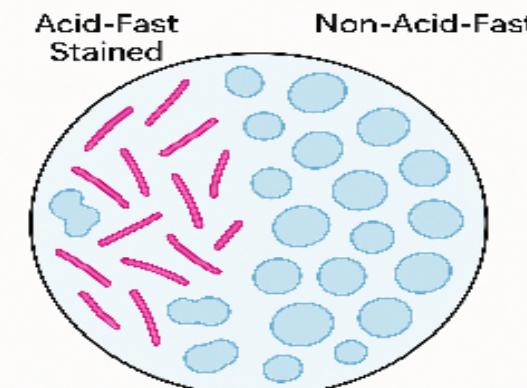
- Gram-positive bacteria retain crystal violet (purple).
- Gram-negative bacteria lose crystal violet and take up safranin (pink).

Comparison table highlighting the differences between Gram-positive and Gram-negative bacteria

Feature	Gram-Positive Bacteria	Gram-Negative Bacteria
Colour After Staining	Purple or violet	Pink or red
Cell Wall Structure	Thick peptidoglycan layer	Thin peptidoglycan layer + outer membrane
Teichoic Acids	Present	Absent
Outer Membrane	Absent	Present (contains lipopolysaccharides)
Examples	<i>Staphylococcus aureus</i> , <i>Bacillus subtilis</i>	<i>Escherichia coli</i> , <i>Salmonella typhi</i>

2) Acid-Fast Staining (Ziehl-Neelsen)

Purpose


- Identifies bacteria with waxy cell walls (rich in mycolic acid),
- e.g. *Mycobacterium tuberculosis* and *M. ulcerans*

Result:

- Acid-fast bacteria: Red.
- Non-acid-fast bacteria: Blue.

Method

1. Stain with carbol fuchsin (red dye).
2. Heat gently to allow dye penetration.
3. Decolourize with acid-alcohol.
4. Counterstain with methylene blue

3) Endospore Staining

Purpose

- Detects bacterial endospores (survival structures).

Method (Schaeffer-Fulton)

1. Stain with malachite green and apply heat.
2. Wash with water.
3. Counterstain with safranin

Result:

- Endospores: Green.
- Vegetative cells: Red.

Example: *Bacillus* and *Clostridium* species.

4) Capsule Staining

- **Purpose:** Reveals capsules (protective layers around bacteria).
- **Method:** Negative staining with India ink or nigrosin.
- **Result:** Capsules appear as clear halos around stained cells.

e.g. *Klebsiella pneumoniae*

5) Flagella Staining

Purpose: Makes bacterial flagella visible.

Method: Uses special stains that coat flagella, making them thick enough to see under a microscope.

Result: Long, hair-like structures extending from cells.

Example: *Salmonella** species with peritrichous flagella.

3) Negative Staining

Definition: Uses acidic dyes (e.g., nigrosin, India ink) that do not penetrate cells but stain the background.

Purpose: Shows cell shape and size without distortion.

Result: Cells appear clear against a dark background.

Example: Useful for observing delicate structures like capsules.

4) Special Stains

These highlight specific structures:

Spore stain – Endospores.

Capsule stain – Capsules.

Flagella stain – Flagella.

Nucleic acid stains – DNA/RNA.